view src/SbpOperators/volumeops/derivatives/dissipation.jl @ 1203:254934aac3f8 feature/dissipation_operators

Change name and clarify docs
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 03 Feb 2023 10:05:52 +0100
parents 9f0121e465a5
children 99df343c7f61
line wrap: on
line source

"""
    undivided_skewed04(g::EquidistantGrid, p, direction)

Create undivided difference operators approximating the `p`th derivative. The operator do not satisfy any SBP-property and are meant to be used for
building artificial dissipation terms.

The operators and how they are used to create accurate artifical dissipation is described in
"K. Mattsson, M. Svärd, and J. Nordström, “Stable and Accurate Artificial Dissipation,” Journal of Scientific Computing, vol. 21, no. 1, pp. 57–79, Aug. 2004"
"""
function undivided_skewed04(g::EquidistantGrid, p, direction)
    T = eltype(g)
    interior_weights = T.(dissipation_interior_weights(p))

    D  = stencil_operator_distinct_closures(
        g,
        dissipation_interior_stencil(interior_weights),
        dissipation_lower_closure_stencils(interior_weights),
        dissipation_upper_closure_stencils(interior_weights),
        direction,
    )
    Dᵀ = stencil_operator_distinct_closures(
        g,
        dissipation_transpose_interior_stencil(interior_weights),
        dissipation_transpose_lower_closure_stencils(interior_weights),
        dissipation_transpose_upper_closure_stencils(interior_weights),
        direction,
    )

    return D, Dᵀ
end

undivided_skewed04(g::EquidistantGrid{1}, p) = undivided_skewed04(g, p, 1)

function dissipation_interior_weights(p)
   if p == 0
       return (1,)
   end

   return (0, dissipation_interior_weights(p-1)...) .- (dissipation_interior_weights(p-1)..., 0)
end

midpoint(weights) = length(weights)÷2 + 1
midpoint_transpose(weights) = length(weights)+1 - midpoint(weights)

function dissipation_interior_stencil(weights)
    return Stencil(weights..., center=midpoint(weights))
end
function dissipation_transpose_interior_stencil(weights)
    if iseven(length(weights))
        weights = map(-, weights)
    end

    return Stencil(weights..., center=midpoint_transpose(weights))
end

dissipation_lower_closure_size(weights) = midpoint(weights) - 1
dissipation_upper_closure_size(weights) = length(weights) - midpoint(weights)

dissipation_lower_closure_stencils(interior_weights) = ntuple(i->Stencil(interior_weights..., center=i                       ), dissipation_lower_closure_size(interior_weights))
dissipation_upper_closure_stencils(interior_weights) = ntuple(i->Stencil(interior_weights..., center=length(interior_weights)-dissipation_upper_closure_size(interior_weights)+i), dissipation_upper_closure_size(interior_weights))

function dissipation_transpose_lower_closure_stencils(interior_weights)
    closure = ntuple(i->dissipation_transpose_lower_closure_stencil(interior_weights, i), length(interior_weights))

    N = maximum(s->length(s.weights), closure)
    return right_pad.(closure, N)
end

function dissipation_transpose_upper_closure_stencils(interior_weights)
    closure = reverse(ntuple(i->dissipation_transpose_upper_closure_stencil(interior_weights, i), length(interior_weights)))

    N = maximum(s->length(s.weights), closure)
    return left_pad.(closure, N)
end


function dissipation_transpose_lower_closure_stencil(interior_weights, i)
    w = ntuple(k->interior_weights[i], dissipation_lower_closure_size(interior_weights))

    for k ∈ i:-1:1
        w = (w..., interior_weights[k])
    end

    return Stencil(w..., center = i)
end

function dissipation_transpose_upper_closure_stencil(interior_weights, i)
    j = length(interior_weights)+1-i
    w = ntuple(k->interior_weights[j], dissipation_upper_closure_size(interior_weights))

    for k ∈ j:1:length(interior_weights)
        w = (interior_weights[k], w...)
    end

    return Stencil(w..., center = length(interior_weights)-midpoint(interior_weights)+1)
end