Mercurial > repos > public > sbplib_julia
view src/SbpOperators/laplace/secondderivative.jl @ 543:1a53eb83ed24 refactor/tensor_index_coupling
Remove some unecessary Index types
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 27 Nov 2020 12:02:47 +0100 |
parents | 011ca1639153 |
children | 9330338d6ab5 |
line wrap: on
line source
""" SecondDerivative{T<:Real,N,M,K} <: TensorOperator{T,1} Implements the Laplace tensor operator `L` with constant grid spacing and coefficients in 1D dimension """ struct SecondDerivative{T,N,M,K} <: TensorMapping{T,1,1} h_inv::T # The grid spacing could be included in the stencil already. Preferable? innerStencil::Stencil{T,N} closureStencils::NTuple{M,Stencil{T,K}} size::NTuple{1,Int} end export SecondDerivative function SecondDerivative(grid::EquidistantGrid{1}, innerStencil, closureStencils) h_inv = inverse_spacing(grid)[1] return SecondDerivative(h_inv, innerStencil, closureStencils, size(grid)) end LazyTensors.range_size(D2::SecondDerivative) = D2.size LazyTensors.domain_size(D2::SecondDerivative) = D2.size # Apply for different regions Lower/Interior/Upper or Unknown region function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Lower}) where T return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(I)], v, Int(I)) end function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Interior}) where T return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(I)) end function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Upper}) where T N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) return @inbounds D2.h_inv*D2.h_inv*apply_stencil_backwards(D2.closureStencils[N-Int(I)+1], v, Int(I)) end function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i) where T N = length(v) # TODO: Use domain_size here instead? r = getregion(i, closuresize(D2), N) I = Index(i, r) return LazyTensors.apply(D2, v, I) end closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} = M