Mercurial > repos > public > sbplib_julia
view src/Grids/manifolds.jl @ 1579:14d79b13b54f feature/grids/manifolds
Add tests, fix bugs, add exports, for Simplex and friends
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 25 Apr 2024 22:14:46 +0200 |
parents | 56da785ab576 |
children | fdee60ab8c4e |
line wrap: on
line source
""" ParameterSpace{D} A space of parameters of dimension `D`. Used with `Chart` to indicate which parameters are valid for that chart. Common parameter spaces are created using the functions unit sized spaces * `unitinterval` * `unitrectangle` * `unitbox` * `unittriangle` * `unittetrahedron` * `unithyperbox` * `unitsimplex` See also: [`Interval`](@ref), [`Rectangle`](@ref), [`Box`](@ref), [`Triangle`](@ref), [`Tetrahedron`](@ref), [`HyperBox`](@ref), [`Simplex`](@ref), """ abstract type ParameterSpace{D} end struct HyperBox{T,D} <: ParameterSpace{D} a::SVector{D,T} b::SVector{D,T} end function HyperBox(a,b) T = SVector{length(a)} HyperBox(convert(T,a), convert(T,b)) end Interval{T} = HyperBox{T,1} Rectangle{T} = HyperBox{T,2} Box{T} = HyperBox{T,3} limits(box::HyperBox, d) = (box.a[d], box.b[d]) limits(box::HyperBox) = (box.a, box.b) unitinterval(T=Float64) = unithyperbox(T,1) unitsquare(T=Float64) = unithyperbox(T,2) unitcube(T=Float64) = unithyperbox(T,3) unithyperbox(T, D) = HyperBox((@SVector zeros(T,D)), (@SVector ones(T,D))) unithyperbox(D) = unithyperbox(Float64,D) struct Simplex{T,D,NV} <: ParameterSpace{D} verticies::NTuple{NV,SVector{D,T}} end Simplex(verticies::Vararg{AbstractArray}) = Simplex(Tuple(SVector(v...) for v ∈ verticies)) verticies(s::Simplex) = s.verticies Triangle{T} = Simplex{T,2} Tetrahedron{T} = Simplex{T,3} unittriangle(T=Float64) = unitsimplex(T,2) unittetrahedron(T=Float64) = unitsimplex(T,3) function unitsimplex(T,D) z = @SVector zeros(T,D) unitelement = one(eltype(z)) verticies = ntuple(i->setindex(z, unitelement, i), D) return Simplex((z,verticies...)) end unitsimplex(D) = unitsimplex(Float64, D) """ A parametrized description of a manifold or part of a manifold. Should implement a methods for * `parameterspace` * `(::Chart)(ξs...)` """ abstract type Chart{D} end # abstract type Chart{D,R} end domain_dim(::Chart{D}) where D = D # range_dim(::Chart{D,R}) where {D,R} = R """ The parameterspace of a chart """ function parameterspace end # TODO: Add trait for if there is a jacobian available? # Add package extension to allow calling the getter function anyway if it's not available # And can we add an informative error that ForwardDiff could be loaded to make it work? # Or can we handle this be custom implementations? For sometypes in the library it can be implemented explicitly. # And as an example for ConcreteChart it can be implemented by the user like # c = ConcreteChart(...) # jacobian(c::typeof(c)) = ... struct ConcreteChart{D, PST<:ParameterSpace{D}, MT} <: Chart{D} mapping::MT parameterspace::PST end (c::ConcreteChart)(ξ) = c.mapping(ξ) parameterspace(c::ConcreteChart) = c.parameterspace jacobian(c::ConcreteChart, ξ) = jacobian(c.mapping, ξ) """ Atlas A collection of charts and their connections. Should implement methods for `charts` and """ abstract type Atlas end """ charts(::Atlas) The colloction of charts in the atlas. """ function charts end """ connections TBD: What exactly should this return? """ struct CartesianAtlas <: Atlas charts::Matrix{Chart} end charts(a::CartesianAtlas) = a.charts struct UnstructuredAtlas <: Atlas charts::Vector{Chart} connections end charts(a::UnstructuredAtlas) = a.charts ### # Geometry ### abstract type Curve end abstract type Surface end struct Line{PT} <: Curve p::PT tangent::PT end (c::Line)(s) = c.p + s*c.tangent struct LineSegment{PT} <: Curve a::PT b::PT end (c::LineSegment)(s) = (1-s)*c.a + s*c.b struct Circle{T,PT} <: Curve c::PT r::T end (c::Circle)(θ) = c.c + r*@SVector[cos(Θ), sin(Θ)] struct TransfiniteInterpolationSurface{T1,T2,T3,T4} <: Surface c₁::T1 c₂::T2 c₃::T3 c₄::T4 end function (s::TransfiniteInterpolationSurface)(u,v) c₁, c₂, c₃, c₄ = s.c₁, s.c₂, s.c₃, s.c₄ P₀₀ = c₁(0) P₁₀ = c₂(0) P₁₁ = c₃(0) P₀₁ = c₄(0) return (1-v)*c₁(u) + u*c₂(v) + v*c₃(1-u) + (1-u)*c₄(1-v) - ( (1-u)*(1-v)*P₀₀ + u*(1-v)*P₁₀ + u*v*P₁₁ + (1-u)*v*P₀₁ ) end function (s::TransfiniteInterpolationSurface)(ξ̄::AbstractArray) s(ξ̄...) end function polygon_sides(Ps...) n = length(Ps) return [t->line(t,Ps[i],Ps[mod1(i+1,n)]) for i ∈ eachindex(Ps)] end