Mercurial > repos > public > sbplib_julia
view Grids/src/EquidistantGrid.jl @ 270:12b738f260a0 boundary_conditions
Add todo-comment
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 05 Dec 2019 11:53:39 +0100 |
parents | f67ce2eb6019 |
children | 047dee8efaef |
line wrap: on
line source
# EquidistantGrid is a grid with equidistant grid spacing per coordinat # direction. The domain is defined through the two points P1 = x̄₁, P2 = x̄₂ # by the exterior product of the vectors obtained by projecting (x̄₂-x̄₁) onto # the coordinate directions. E.g for a 2D grid with x̄₁=(-1,0) and x̄₂=(1,2) # the domain is defined as (-1,1)x(0,2). export EquidistantGrid struct EquidistantGrid{Dim,T<:Real} <: AbstractGrid size::NTuple{Dim, Int} # First coordinate direction stored first limit_lower::NTuple{Dim, T} limit_upper::NTuple{Dim, T} inverse_spacing::NTuple{Dim, T} # Reciprocal of grid spacing # General constructor function EquidistantGrid(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T @assert all(size.>0) @assert all(limit_upper.-limit_lower .!= 0) inverse_spacing = (size.-1)./ abs.(limit_upper.-limit_lower) return new{Dim,T}(size, limit_lower, limit_upper, inverse_spacing) end end function Base.eachindex(grid::EquidistantGrid) CartesianIndices(grid.size) end Base.size(g::EquidistantGrid) = g.size # Returns the number of dimensions of an EquidistantGrid. # # @Input: grid - an EquidistantGrid # @Return: dimension - The dimension of the grid function dimension(grid::EquidistantGrid) return length(grid.size) end # Returns the reciprocal of the spacing of the grid # function inverse_spacing(grid::EquidistantGrid) return grid.inverse_spacing end export inverse_spacing # Returns the reciprocal of the spacing of the grid # # TODO: Evaluate if divisions affect performance function spacing(grid::EquidistantGrid) return 1.0./grid.inverse_spacing end export spacing # Computes the points of an EquidistantGrid as an array of tuples with # the same dimension as the grid. # # @Input: grid - an EquidistantGrid # @Return: points - the points of the grid. function points(grid::EquidistantGrid) # TODO: Make this return an abstract array? indices = Tuple.(CartesianIndices(grid.size)) h = spacing(grid) return broadcast(I -> grid.limit_lower .+ (I.-1).*h, indices) end function pointsalongdim(grid::EquidistantGrid, dim::Integer) @assert dim<=dimension(grid) @assert dim>0 points = collect(range(grid.limit_lower[dim],stop=grid.limit_upper[dim],length=grid.size[dim])) end