Mercurial > repos > public > sbplib_julia
view DiffOps/src/laplace.jl @ 284:0b8e041a1873 boundary_conditions
Change how range_size and domain_size work with BoundaryValues and NormalDerivative
Also add a whole bunch of questions and todos
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 18 Jun 2020 22:07:10 +0200 |
parents | 12a12a5cd973 |
children | e21dcda55163 |
line wrap: on
line source
struct Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} grid::EquidistantGrid{Dim,T} # TODO: Should this be here? Should probably be possible to applay a Laplace object to any size grid function a::T # TODO: Better name? op::D2{T,N,M,K} end export Laplace # At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings LazyTensors.domain_size(H::Laplace{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} error("not implemented") end # u = L*v function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T uᵢ = L.a*apply_2nd_derivative(L.op, inverse_spacing(L.grid)[1], v, I[1]) return uᵢ end @inline function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T # 2nd x-derivative @inbounds vx = view(v, :, Int(I[2])) @inbounds uᵢ = L.a*apply_2nd_derivative(L.op, inverse_spacing(L.grid)[1], vx , I[1]) # 2nd y-derivative @inbounds vy = view(v, Int(I[1]), :) @inbounds uᵢ += L.a*apply_2nd_derivative(L.op, inverse_spacing(L.grid)[2], vy, I[2]) return uᵢ end quadrature(L::Laplace) = Quadrature(L.op, L.grid) inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) export quadrature """ Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the quadrature operator `H` of Dim dimension as a TensorMapping """ struct Quadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} op::D2{T,N,M,K} grid::EquidistantGrid{Dim,T} end export Quadrature LazyTensors.domain_size(H::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size @inline function LazyTensors.apply(H::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T N = size(H.grid) # Quadrature in x direction @inbounds q = apply_quadrature(H.op, spacing(H.grid)[1], v[I] , I[1], N[1]) # Quadrature in y-direction @inbounds q = apply_quadrature(H.op, spacing(H.grid)[2], q, I[2], N[2]) return q end LazyTensors.apply_transpose(H::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I) """ InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the inverse quadrature operator `inv(H)` of Dim dimension as a TensorMapping """ struct InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} op::D2{T,N,M,K} grid::EquidistantGrid{Dim,T} end export InverseQuadrature LazyTensors.domain_size(H_inv::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size @inline function LazyTensors.apply(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T N = size(H_inv.grid) # Inverse quadrature in x direction @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[1], v[I] , I[1], N[1]) # Inverse quadrature in y-direction @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[2], q_inv, I[2], N[2]) return q_inv end LazyTensors.apply_transpose(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H_inv,v,I) """ BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} Implements the boundary operator `e` as a TensorMapping """ struct BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} op::D2{T,N,M,K} grid::EquidistantGrid{2} bId::CartesianBoundary end export BoundaryValue # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? # Can we give special treatment to TensorMappings that go to a higher dim? function LazyTensors.range_size(e::BoundaryValue{T}, domain_size::NTuple{1,Integer}) where T if dim(e.bId) == 1 return (missing, domain_size[1]) elseif dim(e.bId) == 2 return (domain_size[1], missing) end end LazyTensors.domain_size(e::BoundaryValue{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],) # TODO: Make a nicer solution for 3-dim(e.bId) # TODO: Make this independent of dimension function LazyTensors.apply(e::BoundaryValue{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T i = I[dim(e.bId)] j = I[3-dim(e.bId)] N_i = size(e.grid)[dim(e.bId)] return apply_boundary_value(e.op, v[j], i, N_i, region(e.bId)) end function LazyTensors.apply_transpose(e::BoundaryValue{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T u = selectdim(v,3-dim(e.bId),Int(I[1])) return apply_boundary_value_transpose(e.op, u, region(e.bId)) end """ NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} Implements the boundary operator `d` as a TensorMapping """ struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} op::D2{T,N,M,K} grid::EquidistantGrid{2} bId::CartesianBoundary end export NormalDerivative # TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? # Can we give special treatment to TensorMappings that go to a higher dim? function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer}) if dim(e.bId) == 1 return (missing, domain_size[1]) elseif dim(e.bId) == 2 return (domain_size[1], missing) end end LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],) # TODO: Not type stable D:< # TODO: Make this independent of dimension function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T i = I[dim(d.bId)] j = I[3-dim(d.bId)] N_i = size(d.grid)[dim(d.bId)] h_inv = inverse_spacing(d.grid)[dim(d.bId)] return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId)) end function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T u = selectdim(v,3-dim(d.bId),Int(I[1])) return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId)) end """ BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} Implements the boundary operator `q` as a TensorOperator """ struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} op::D2{T,N,M,K} grid::EquidistantGrid{2} bId::CartesianBoundary end export BoundaryQuadrature # TODO: Make this independent of dimension function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T h = spacing(q.grid)[3-dim(q.bId)] N = size(v) return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) end LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I) struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} e = boundary_value(L, Bid()) d = normal_derivative(L, Bid()) Hᵧ = boundary_quadrature(L, Bid()) H⁻¹ = inverse_quadrature(L) return (-H⁻¹*e*Hᵧ*(d'*v - g))[I] end struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition tau::Float64 end function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} e = boundary_value(L, Bid()) d = normal_derivative(L, Bid()) Hᵧ = boundary_quadrature(L, Bid()) H⁻¹ = inverse_quadrature(L) return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I] # Need to handle scalar multiplication and addition of TensorMapping end # function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D # return apply(s.L, v, i) + # sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + # sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + # sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + # sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) # end