Mercurial > repos > public > sbplib_julia
view test/testLazyTensors.jl @ 347:0a95a829176c performance/lazy_elementwise_operation
lazy_array.jl: Bring back the concrete types in the LazyElementwiseOperation struct.
We went this to be able to avoid dynamic dispatch
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 25 Sep 2020 21:51:14 +0200 |
parents | 2b0c9b30ea3b |
children | 7fe43d902a27 |
line wrap: on
line source
using Test using Sbplib.LazyTensors using Sbplib.RegionIndices @testset "LazyTensors" begin @testset "Generic Mapping methods" begin struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::NTuple{R,Index{<:Region}}) where {T,R,D} = :apply @test range_dim(DummyMapping{Int,2,3}()) == 2 @test domain_dim(DummyMapping{Int,2,3}()) == 3 @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),(Index{Unknown}(0),Index{Unknown}(0))) == :apply end @testset "Generic Operator methods" begin struct DummyOperator{T,D} <: TensorOperator{T,D} end @test range_size(DummyOperator{Int,2}(), (3,5)) == (3,5) @test domain_size(DummyOperator{Float64, 3}(), (3,3,1)) == (3,3,1) end @testset "Mapping transpose" begin struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end LazyTensors.apply(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},R}) where {T,R,D} = :apply LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Index{<:Region},D}) where {T,R,D} = :apply_transpose LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = :range_size LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = :domain_size m = DummyMapping{Float64,2,3}() I = Index{Unknown}(0) @test m' isa TensorMapping{Float64, 3,2} @test m'' == m @test apply(m',zeros(Float64,(0,0)), I, I, I) == :apply_transpose @test apply(m'',zeros(Float64,(0,0,0)), I, I) == :apply @test apply_transpose(m', zeros(Float64,(0,0,0)), I, I) == :apply @test range_size(m', (0,0)) == :domain_size @test domain_size(m', (0,0,0)) == :range_size end @testset "TensorApplication" begin struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end LazyTensors.apply(m::DummyMapping{T,R,D}, v, i::Vararg{Index{<:Region},R}) where {T,R,D} = (:apply,v,i) LazyTensors.range_size(m::DummyMapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} = 2 .* domain_size LazyTensors.domain_size(m::DummyMapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} = range_size.÷2 m = DummyMapping{Int, 1, 1}() v = [0,1,2] @test m*v isa AbstractVector{Int} @test size(m*v) == 2 .*size(v) @test (m*v)[Index{Upper}(0)] == (:apply,v,(Index{Upper}(0),)) @test (m*v)[0] == (:apply,v,(Index{Unknown}(0),)) @test m*m*v isa AbstractVector{Int} @test (m*m*v)[Index{Upper}(1)] == (:apply,m*v,(Index{Upper}(1),)) @test (m*m*v)[1] == (:apply,m*v,(Index{Unknown}(1),)) @test (m*m*v)[Index{Interior}(3)] == (:apply,m*v,(Index{Interior}(3),)) @test (m*m*v)[3] == (:apply,m*v,(Index{Unknown}(3),)) @test (m*m*v)[Index{Lower}(6)] == (:apply,m*v,(Index{Lower}(6),)) @test (m*m*v)[6] == (:apply,m*v,(Index{Unknown}(6),)) @test_broken BoundsError == (m*m*v)[0] @test_broken BoundsError == (m*m*v)[7] m = DummyMapping{Int, 2, 1}() @test_throws MethodError m*ones(Int,2,2) @test_throws MethodError m*m*v m = DummyMapping{Float64, 2, 2}() v = ones(3,3) I = (Index{Lower}(1),Index{Interior}(2)); @test size(m*v) == 2 .*size(v) @test (m*v)[I] == (:apply,v,I) struct ScalingOperator{T,D} <: TensorOperator{T,D} λ::T end LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Index,D}) where {T,D} = m.λ*v[I] m = ScalingOperator{Int,1}(2) v = [1,2,3] @test m*v isa AbstractVector @test m*v == [2,4,6] m = ScalingOperator{Int,2}(2) v = [[1 2];[3 4]] @test m*v == [[2 4];[6 8]] I = (Index{Upper}(2),Index{Lower}(1)) @test (m*v)[I] == 6 end @testset "TensorMapping binary operations" begin struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D} λ::T end LazyTensors.apply(m::ScalarMapping{T,R,D}, v, I::Vararg{Index{<:Region}}) where {T,R,D} = m.λ*v[I...] LazyTensors.range_size(m::ScalarMapping, domain_size) = domain_size LazyTensors.domain_size(m::ScalarMapping, range_sizes) = range_sizes A = ScalarMapping{Float64,1,1}(2.0) B = ScalarMapping{Float64,1,1}(3.0) v = [1.1,1.2,1.3] for i ∈ eachindex(v) @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] end for i ∈ eachindex(v) @test ((A-B)*v)[i] == 2*v[i] - 3*v[i] end @test range_size(A+B, (3,)) == range_size(A, (3,)) == range_size(B,(3,)) @test domain_size(A+B, (3,)) == domain_size(A, (3,)) == domain_size(B,(3,)) end @testset "LazyArray" begin @testset "LazyConstantArray" begin @test LazyTensors.LazyConstantArray(3,(3,2)) isa LazyArray{Int,2} lca = LazyTensors.LazyConstantArray(3.0,(3,2)) @test eltype(lca) == Float64 @test ndims(lca) == 2 @test size(lca) == (3,2) @test lca[2] == 3.0 end struct DummyArray{T,D, T1<:AbstractArray{T,D}} <: LazyArray{T,D} data::T1 end Base.size(v::DummyArray) = size(v.data) Base.getindex(v::DummyArray{T,D}, I::Vararg{Int,D}) where {T,D} = v.data[I...] # Test lazy operations v1 = [1, 2.3, 4] v2 = [1., 2, 3] s = 3.4 r_add_v = v1 .+ v2 r_sub_v = v1 .- v2 r_times_v = v1 .* v2 r_div_v = v1 ./ v2 r_add_s = v1 .+ s r_sub_s = v1 .- s r_times_s = v1 .* s r_div_s = v1 ./ s @test isa(v1 +̃ v2, LazyArray) @test isa(v1 -̃ v2, LazyArray) @test isa(v1 *̃ v2, LazyArray) @test isa(v1 /̃ v2, LazyArray) @test isa(v1 +̃ s, LazyArray) @test isa(v1 -̃ s, LazyArray) @test isa(v1 *̃ s, LazyArray) @test isa(v1 /̃ s, LazyArray) @test isa(s +̃ v1, LazyArray) @test isa(s -̃ v1, LazyArray) @test isa(s *̃ v1, LazyArray) @test isa(s /̃ v1, LazyArray) for i ∈ eachindex(v1) @test (v1 +̃ v2)[i] == r_add_v[i] @test (v1 -̃ v2)[i] == r_sub_v[i] @test (v1 *̃ v2)[i] == r_times_v[i] @test (v1 /̃ v2)[i] == r_div_v[i] @test (v1 +̃ s)[i] == r_add_s[i] @test (v1 -̃ s)[i] == r_sub_s[i] @test (v1 *̃ s)[i] == r_times_s[i] @test (v1 /̃ s)[i] == r_div_s[i] @test (s +̃ v1)[i] == r_add_s[i] @test (s -̃ v1)[i] == -r_sub_s[i] @test (s *̃ v1)[i] == r_times_s[i] @test (s /̃ v1)[i] == 1/r_div_s[i] end @test_throws BoundsError (v1 +̃ v2)[4] v2 = [1., 2, 3, 4] # Test that size of arrays is asserted when not specified inbounds @test_throws DimensionMismatch v1 +̃ v2 # Test operations on LazyArray v1 = DummyArray([1, 2.3, 4]) v2 = [1., 2, 3] @test isa(v1 + v2, LazyArray) @test isa(v2 + v1, LazyArray) @test isa(v1 - v2, LazyArray) @test isa(v2 - v1, LazyArray) for i ∈ eachindex(v2) @test (v1 + v2)[i] == (v2 + v1)[i] == r_add_v[i] @test (v1 - v2)[i] == -(v2 - v1)[i] == r_sub_v[i] end @test_throws BoundsError (v1 + v2)[4] v2 = [1., 2, 3, 4] # Test that size of arrays is asserted when not specified inbounds @test_throws DimensionMismatch v1 + v2 end end