Mercurial > repos > public > sbplib_julia
view test/SbpOperators/volumeops/laplace/laplace_test.jl @ 1647:0685d97ebcb0 feature/sbp_operators/laplace_curvilinear
Start adding test for laplace on mapped grid
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 02 May 2024 14:48:03 +0200 |
parents | 62cb622cbe6b |
children | 707fc9761c2b |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.LazyTensors using StaticArrays @testset "Laplace" begin # Default stencils (4th order) operator_path = sbp_operators_path()*"standard_diagonal.toml" stencil_set = read_stencil_set(operator_path; order=4) g_1D = equidistant_grid(0.0, 1., 101) g_3D = equidistant_grid((0.0, -1.0, 0.0), (1., 1., 1.), 51, 101, 52) @testset "Constructors" begin @testset "1D" begin @test Laplace(g_1D, stencil_set) == Laplace(laplace(g_1D, stencil_set), stencil_set) @test Laplace(g_1D, stencil_set) isa LazyTensor{Float64,1,1} end @testset "3D" begin @test Laplace(g_3D, stencil_set) == Laplace(laplace(g_3D, stencil_set),stencil_set) @test Laplace(g_3D, stencil_set) isa LazyTensor{Float64,3,3} end end # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. @testset "Accuracy" begin l2(v) = sqrt(prod(spacing.(g_3D.grids))*sum(v.^2)); polynomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) polynomials = (polynomials...,eval_on(g_3D,f_i)) end # v = eval_on(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) # Δv = eval_on(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) v = eval_on(g_3D, x̄ -> sin(x̄[1]) + cos(x̄[2]) + exp(x̄[3])) Δv = eval_on(g_3D, x̄ -> -sin(x̄[1]) - cos(x̄[2]) + exp(x̄[3])) @inferred v[1,2,3] # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin stencil_set = read_stencil_set(operator_path; order=2) Δ = Laplace(g_3D, stencil_set) @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test Δ*v ≈ Δv rtol = 5e-2 norm = l2 end # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin stencil_set = read_stencil_set(operator_path; order=4) Δ = Laplace(g_3D, stencil_set) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Δ*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 @test Δ*polynomials[3] ≈ polynomials[1] atol = 5e-9 @test Δ*polynomials[4] ≈ polynomials[2] atol = 5e-9 @test Δ*v ≈ Δv rtol = 5e-4 norm = l2 end end end @testset "laplace" begin operator_path = sbp_operators_path()*"standard_diagonal.toml" stencil_set = read_stencil_set(operator_path; order=4) g_1D = equidistant_grid(0.0, 1., 101) g_3D = equidistant_grid((0.0, -1.0, 0.0), (1., 1., 1.), 51, 101, 52) @testset "EquidistantGrid" begin Δ = laplace(g_1D, stencil_set) @test Δ == second_derivative(g_1D, stencil_set) @test Δ isa LazyTensor{Float64,1,1} end @testset "TensorGrid" begin Δ = laplace(g_3D, stencil_set) @test Δ isa LazyTensor{Float64,3,3} Dxx = second_derivative(g_3D, stencil_set, 1) Dyy = second_derivative(g_3D, stencil_set, 2) Dzz = second_derivative(g_3D, stencil_set, 3) @test Δ == Dxx + Dyy + Dzz @test Δ isa LazyTensor{Float64,3,3} end @testset "MappedGrid" begin c = Chart(unitsquare()) do (ξ,η) @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] end Grids.jacobian(c::typeof(c), (ξ,η)) = @SMatrix[2 1-2η; (2+η)*ξ 3+ξ^2/2] g = equidistant_grid(c, 30,30) @test laplace(g, stencil_set) isa LazyTensor{<:Any,2,2} f((x,y)) = sin(4(x + y)) Δf((x,y)) = -16sin(4(x + y)) gf = map(f,g) Δ = laplace(g, stencil_set) @test collect(Δ*gf) isa Array{<:Any,2} @test Δ*gf ≈ map(Δf, g) end end