Mercurial > repos > public > sbplib_julia
view test/SbpOperators/volumeops/volume_operator_test.jl @ 1099:05a25a5063bb refactor/sbpoperators/inflation
Try to remove volume_operator and boundary_operator methods
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 21 Mar 2022 12:51:39 +0100 |
parents | 1ba8a398af9c |
children | 0ba4609605d4 |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.RegionIndices using Sbplib.LazyTensors import Sbplib.SbpOperators.Stencil import Sbplib.SbpOperators.VolumeOperator import Sbplib.SbpOperators.odd import Sbplib.SbpOperators.even @testset "VolumeOperator" begin inner_stencil = CenteredStencil(1/4, 2/4, 1/4) closure_stencils = (Stencil(1/2, 1/2; center=1), Stencil(0.,1.; center=2)) g_1D = EquidistantGrid(11,0.,1.) @testset "Constructors" begin op = VolumeOperator(inner_stencil,closure_stencils,(11,),even) @test op == VolumeOperator(g_1D,inner_stencil,closure_stencils,even) @test op isa LazyTensor{T,1,1} where T end @testset "Sizes" begin @testset "1D" begin op = VolumeOperator(g_1D,inner_stencil,closure_stencils,even) @test range_size(op) == domain_size(op) == size(g_1D) end end # op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) # op_y = volume_operator(g_2D,inner_stencil,closure_stencils,odd,2) # v = zeros(size(g_2D)) # Nx = size(g_2D)[1] # Ny = size(g_2D)[2] # for i = 1:Nx # v[i,:] .= i # end # rx = copy(v) # rx[1,:] .= 1.5 # rx[Nx,:] .= (2*Nx-1)/2 # ry = copy(v) # ry[:,Ny-1:Ny] = -v[:,Ny-1:Ny] # @testset "Application" begin # @test op_x*v ≈ rx rtol = 1e-14 # @test op_y*v ≈ ry rtol = 1e-14 # @test (op_x*rand(ComplexF64,size(g_2D)))[2,2] isa ComplexF64 # end # @testset "Regions" begin # @test (op_x*v)[Index(1,Lower),Index(3,Interior)] ≈ rx[1,3] rtol = 1e-14 # @test (op_x*v)[Index(2,Lower),Index(3,Interior)] ≈ rx[2,3] rtol = 1e-14 # @test (op_x*v)[Index(6,Interior),Index(3,Interior)] ≈ rx[6,3] rtol = 1e-14 # @test (op_x*v)[Index(10,Upper),Index(3,Interior)] ≈ rx[10,3] rtol = 1e-14 # @test (op_x*v)[Index(11,Upper),Index(3,Interior)] ≈ rx[11,3] rtol = 1e-14 # @test_throws BoundsError (op_x*v)[Index(3,Lower),Index(3,Interior)] # @test_throws BoundsError (op_x*v)[Index(9,Upper),Index(3,Interior)] # @test (op_y*v)[Index(3,Interior),Index(1,Lower)] ≈ ry[3,1] rtol = 1e-14 # @test (op_y*v)[Index(3,Interior),Index(2,Lower)] ≈ ry[3,2] rtol = 1e-14 # @test (op_y*v)[Index(3,Interior),Index(6,Interior)] ≈ ry[3,6] rtol = 1e-14 # @test (op_y*v)[Index(3,Interior),Index(11,Upper)] ≈ ry[3,11] rtol = 1e-14 # @test (op_y*v)[Index(3,Interior),Index(12,Upper)] ≈ ry[3,12] rtol = 1e-14 # @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(10,Upper)] # @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(3,Lower)] # end # @testset "Inferred" begin # @test_skip @inferred apply(op_x, v,1,1) # @inferred apply(op_x, v, Index(1,Lower),Index(1,Lower)) # @inferred apply(op_x, v, Index(6,Interior),Index(1,Lower)) # @inferred apply(op_x, v, Index(11,Upper),Index(1,Lower)) # @test_skip @inferred apply(op_y, v,1,1) # @inferred apply(op_y, v, Index(1,Lower),Index(1,Lower)) # @inferred apply(op_y, v, Index(1,Lower),Index(6,Interior)) # @inferred apply(op_y, v, Index(1,Lower),Index(11,Upper)) # end end