diff src/Grids/geometry.jl @ 2079:118c09b168f5 default tip

Merge feature/grids/geometry_functions
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 18 Feb 2026 21:33:00 +0100
parents 6797a6cb1da7
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Grids/geometry.jl	Wed Feb 18 21:33:00 2026 +0100
@@ -0,0 +1,327 @@
+struct Line{PT}
+    p::PT
+    tangent::PT
+
+    Line{PT}(p::PT, tangent::PT) where PT = new{PT}(p,tangent)
+end
+
+
+"""
+    Line(p,t)
+
+A line, as a callable object, starting at `p` with tangent `t`.
+The parametrization is ``l(s) = p + st``.
+
+# Example
+```julia-repl
+julia> l = Grids.Line([1,1],[2,1])
+Diffinitive.Grids.Line{StaticArraysCore.SVector{2, Int64}}([1, 1], [2, 1])
+
+julia> l(0)
+2-element StaticArraysCore.SVector{2, Int64} with indices SOneTo(2):
+ 1
+ 1
+
+julia> l(1)
+2-element StaticArraysCore.SVector{2, Int64} with indices SOneTo(2):
+ 3
+ 2
+```
+
+See also: [`LineSegment`](@ref).
+"""
+function Line(p, t)
+    p = SVector{length(p)}(p)
+    t = SVector{length(t)}(t)
+    p, t = promote(p, t)
+
+    return Line{typeof(p)}(p,t)
+end
+
+(c::Line)(s) = c.p + s*c.tangent
+
+Grids.jacobian(l::Line, t) = l.tangent
+
+struct LineSegment{PT}
+    a::PT
+    b::PT
+
+    LineSegment{PT}(p::PT, tangent::PT) where PT = new{PT}(p,tangent)
+end
+
+
+"""
+    LineSegment(a,b)
+
+A line segment, as a callable object, from `a` to `b`.
+The parametrization is ``l(s) = (1-s)a + s*b``.
+
+# Example
+```julia-repl
+julia> l = Grids.LineSegment([1,1],[2,1])
+Diffinitive.Grids.LineSegment{StaticArraysCore.SVector{2, Int64}}([1, 1], [2, 1])
+
+julia> l(0)
+2-element StaticArraysCore.SVector{2, Int64} with indices SOneTo(2):
+ 1
+ 1
+
+julia> l(0.5)
+2-element StaticArraysCore.SVector{2, Float64} with indices SOneTo(2):
+ 1.5
+ 1.0
+
+julia> l(1)
+2-element StaticArraysCore.SVector{2, Int64} with indices SOneTo(2):
+ 2
+ 1
+```
+
+See also: [`Line`](@ref).
+"""
+function LineSegment(a, b)
+    a = SVector{length(a)}(a)
+    b = SVector{length(b)}(b)
+    a, b = promote(a, b)
+
+    return LineSegment{typeof(a)}(a,b)
+end
+
+(c::LineSegment)(s) = (1-s)*c.a + s*c.b
+
+Grids.jacobian(c::LineSegment, s) = c.b - c.a
+
+
+"""
+    linesegments(ps...)
+
+An array of line segments between the points `ps[1]`, `ps[2]`, and so on.
+
+See also: [`polygon_edges`](@ref).
+"""
+function linesegments(ps...)
+    return [LineSegment(ps[i], ps[i+1]) for i ∈ 1:length(ps)-1]
+end
+
+
+"""
+    polygon_edges(ps...)
+
+An array of line segments between the points `ps[1]`, `ps[2]`, and so on
+including the segment between `ps[end]` and `ps[1]`.
+
+See also: [`linesegments`](@ref).
+"""
+function polygon_edges(ps...)
+    n = length(ps)
+    return [LineSegment(ps[i], ps[mod1(i+1,n)]) for i ∈ eachindex(ps)]
+end
+
+
+struct Circle{PT,T}
+    c::PT
+    r::T
+
+    Circle{PT,T}(c,r) where {PT,T} = new{PT,T}(c,r)
+end
+
+"""
+    Circle(c,r)
+
+A circle with center `c` and radius `r` paramatrized with the angle to the x-axis.
+
+# Example
+```julia-repl
+julia> c = Grids.Circle([1,1], 2)
+Diffinitive.Grids.Circle{StaticArraysCore.SVector{2, Int64}, Int64}([1, 1], 2)
+
+julia> c(0)
+2-element StaticArraysCore.SVector{2, Float64} with indices SOneTo(2):
+ 3.0
+ 1.0
+
+julia> c(π/2)
+2-element StaticArraysCore.SVector{2, Float64} with indices SOneTo(2):
+ 1.0000000000000002
+ 3.0
+```
+"""
+function Circle(c,r)
+    c = SVector{2}(c)
+    return Circle{typeof(c), typeof(r)}(c,r)
+end
+
+function (C::Circle)(θ)
+    (;c, r) = C
+    c + r*@SVector[cos(θ), sin(θ)]
+end
+
+function Grids.jacobian(C::Circle, θ)
+    (;r) = C
+    r*@SVector[-sin(θ), cos(θ)]
+end
+
+
+struct Arc{PT,T}
+    c::Circle{PT,T}
+    θ₀::T
+    θ₁::T
+end
+
+"""
+    Arc(C::Circle, θ₀, θ₁)
+
+A circular arc as a callable object. The arc is around the circle `C` between
+angles `θ₀` and `θ₁` and is paramatrized between 0 and 1.
+
+See also: [`arc`](@ref), [`Circle`](@ref).
+"""
+function Arc(C, θ₀, θ₁)
+    r, θ₀, θ₁ = promote(C.r, θ₀, θ₁)
+
+    return Arc(Circle(C.c, r), θ₀, θ₁)
+end
+
+function (A::Arc)(t)
+    (; θ₀, θ₁) = A
+    return A.c((1-t)*θ₀ + t*θ₁)
+end
+
+function Grids.jacobian(A::Arc, t)
+    (;c, θ₀, θ₁) = A
+    return (θ₁-θ₀)*jacobian(c, t)
+end
+
+
+"""
+    arc(a,b,r)
+
+A circular arc between the points `a` and `b` with radius `abs(r)`. If `r > 0`
+the arc goes counter clockwise and if `r<0` the arc goes clockwise. The arc is
+parametrized such that if `A = arc(a,b,r)` then `A(0)` corresponds to `a` and
+`A(1)` to `b`.
+
+See also: [`Arc`](@ref), [`Circle`](@ref).
+"""
+function arc(a,b,r)
+    if abs(r) < norm(b-a)/2
+        throw(DomainError(r, "arc was called with radius r = $r smaller than half the distance between the points."))
+    end
+
+    R̂ = @SMatrix[0 -1; 1 0]
+
+    α = sign(r)*√(r^2 - norm((b-a)/2)^2)
+    t̂ = R̂*(b-a)/norm(b-a)
+
+    c = (a+b)/2 + α*t̂
+
+    ca = a-c
+    cb = b-c
+    θₐ = atan(ca[2],ca[1])
+    θᵦ = atan(cb[2],cb[1])
+
+    Δθ = mod(θᵦ-θₐ+π, 2π)-π # Δθ in the interval (-π,π)
+
+    if r > 0
+        Δθ = abs(Δθ)
+    else
+        Δθ = -abs(Δθ)
+    end
+
+    return Arc(Circle(c,abs(r)), θₐ, θₐ+Δθ)
+end
+
+"""
+    TransfiniteInterpolationSurface(c₁, c₂, c₃, c₄)
+
+A surface defined by the transfinite interpolation of the curves `c₁`, `c₂`, `c₃`, and  `c₄`.
+The transfinite interpolation maps the unit square ([0,1]⊗[0,1]) to the patch delimited by the given curves.
+The curves should encircle the patch counterclockwise.
+
+See https://en.wikipedia.org/wiki/Transfinite_interpolation for more information on transfinite interpolation.
+"""
+struct TransfiniteInterpolationSurface{T1,T2,T3,T4}
+    c₁::T1
+    c₂::T2
+    c₃::T3
+    c₄::T4
+end
+
+function (s::TransfiniteInterpolationSurface)(u,v)
+    if (u,v) ∉ unitsquare()
+        throw(DomainError((u,v), "Transfinite interpolation was called with parameters outside the unit square."))
+    end
+    c₁, c₂, c₃, c₄ = s.c₁, s.c₂, s.c₃, s.c₄
+    P₀₀ = c₁(0)
+    P₁₀ = c₂(0)
+    P₁₁ = c₃(0)
+    P₀₁ = c₄(0)
+    return (1-v)*c₁(u) + u*c₂(v) + v*c₃(1-u) + (1-u)*c₄(1-v) - (
+        (1-u)*(1-v)*P₀₀ + u*(1-v)*P₁₀ + u*v*P₁₁ + (1-u)*v*P₀₁
+    )
+end
+
+function (s::TransfiniteInterpolationSurface)(ξ̄::AbstractArray)
+    s(ξ̄...)
+end
+
+"""
+    check_transfiniteinterpolation(s::TransfiniteInterpolationSurface)
+
+Throw an error if the ends of the curves in the transfinite interpolation do not match.
+"""
+function check_transfiniteinterpolation(s::TransfiniteInterpolationSurface)
+    if check_transfiniteinterpolation(Bool, s)
+        return nothing
+    else
+        throw(ArgumentError("The end of each curve in the transfinite interpolation should be the same as the beginning of the next curve."))
+    end
+end
+
+"""
+    check_transfiniteinterpolation(Bool, s::TransfiniteInterpolationSurface)
+
+Return true if the ends of the curves in the transfinite interpolation match.
+"""
+function check_transfiniteinterpolation(::Type{Bool}, s::TransfiniteInterpolationSurface)
+    if !isapprox(s.c₁(1), s.c₂(0))
+        return false
+    end
+
+    if !isapprox(s.c₂(1), s.c₃(0))
+        return false
+    end
+
+    if !isapprox(s.c₃(1), s.c₄(0))
+        return false
+    end
+
+    if !isapprox(s.c₄(1), s.c₁(0))
+        return false
+    end
+
+    return true
+end
+
+function Grids.jacobian(s::TransfiniteInterpolationSurface, ξ̄)
+    if ξ̄ ∉ unitsquare()
+        throw(DomainError(ξ̄, "Transfinite interpolation was called with parameters outside the unit square."))
+    end
+    u, v = ξ̄
+
+    c₁, c₂, c₃, c₄ = s.c₁, s.c₂, s.c₃, s.c₄
+    P₀₀ = c₁(0)
+    P₁₀ = c₂(0)
+    P₁₁ = c₃(0)
+    P₀₁ = c₄(0)
+
+    ∂x̄∂ξ₁ = (1-v)*jacobian(c₁,u) + c₂(v) - v*jacobian(c₃,1-u) -c₄(1-v) - (
+        -(1-v)*P₀₀ + (1-v)*P₁₀ + v*P₁₁ - v*P₀₁
+    )
+
+    ∂x̄∂ξ₂ = -c₁(u) + u*jacobian(c₂,v) + c₃(1-u) - (1-u)*jacobian(c₄,1-v) - (
+        -(1-u)*P₀₀ - u*P₁₀ + u*P₁₁ + (1-u)*P₀₁
+    )
+
+    return [∂x̄∂ξ₁ ∂x̄∂ξ₂]
+end