Mercurial > repos > public > sbplib_julia
diff SbpOperators/src/laplace/laplace.jl @ 293:f63232aeb1c6
Move laplace.jl from DiffOps to SbpOperators. Rename constandlaplace to secondderivative
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 22 Jun 2020 22:08:56 +0200 |
parents | DiffOps/src/laplace.jl@7247e85dc1e8 |
children | b00eea62c78e |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SbpOperators/src/laplace/laplace.jl Mon Jun 22 22:08:56 2020 +0200 @@ -0,0 +1,223 @@ +""" + Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} + +Implements the Laplace operator `L` in Dim dimensions as a tensor operator +The multi-dimensional tensor operator simply consists of a tuple of the 1D +Laplace tensor operator as defined by ConstantLaplaceOperator. +""" +struct Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} + D2::NTuple(Dim,SecondDerivative{T,N,M,K}) + #TODO: Write a good constructor +end +export Laplace + +LazyTensors.domain_size(H::Laplace{Dim}, range_size::NTuple{Dim,Integer}) = range_size + +function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} + error("not implemented") +end + +# u = L*v +function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + return apply(L.D2[1],v,I) +end + + +@inline function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + # 2nd x-derivative + @inbounds vx = view(v, :, Int(I[2])) + @inbounds uᵢ = apply(L.D2[1], vx , (I[1],)) #Tuple conversion here is ugly. How to do it? Should we use indexing here? + + # 2nd y-derivative + @inbounds vy = view(v, Int(I[1]), :) + @inbounds uᵢ += apply(L.D2[2], vy , (I[2],)) #Tuple conversion here is ugly. How to do it? + + return uᵢ +end + +quadrature(L::Laplace) = Quadrature(L.op, L.grid) +inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) +boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) +normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) +boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) +export quadrature + +# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `H` of Dim dimension as a TensorMapping +""" +struct Quadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} + op::D2{T,N,M,K} + grid::EquidistantGrid{Dim,T} +end +export Quadrature + +LazyTensors.domain_size(H::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +@inline function LazyTensors.apply(H::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + N = size(H.grid) + # Quadrature in x direction + @inbounds q = apply_quadrature(H.op, spacing(H.grid)[1], v[I] , I[1], N[1]) + # Quadrature in y-direction + @inbounds q = apply_quadrature(H.op, spacing(H.grid)[2], q, I[2], N[2]) + return q +end + +LazyTensors.apply_transpose(H::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I) + + +""" + InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the inverse quadrature operator `inv(H)` of Dim dimension as a TensorMapping +""" +struct InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} + op::D2{T,N,M,K} + grid::EquidistantGrid{Dim,T} +end +export InverseQuadrature + +LazyTensors.domain_size(H_inv::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +@inline function LazyTensors.apply(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + N = size(H_inv.grid) + # Inverse quadrature in x direction + @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[1], v[I] , I[1], N[1]) + # Inverse quadrature in y-direction + @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[2], q_inv, I[2], N[2]) + return q_inv +end + +LazyTensors.apply_transpose(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H_inv,v,I) + +""" + BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} + +Implements the boundary operator `e` as a TensorMapping +""" +struct BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} + op::D2{T,N,M,K} + grid::EquidistantGrid{2} + bId::CartesianBoundary +end +export BoundaryValue + +# TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? +# Can we give special treatment to TensorMappings that go to a higher dim? +function LazyTensors.range_size(e::BoundaryValue{T}, domain_size::NTuple{1,Integer}) where T + if dim(e.bId) == 1 + return (UnknownDim, domain_size[1]) + elseif dim(e.bId) == 2 + return (domain_size[1], UnknownDim) + end +end +LazyTensors.domain_size(e::BoundaryValue{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],) +# TODO: Make a nicer solution for 3-dim(e.bId) + +# TODO: Make this independent of dimension +function LazyTensors.apply(e::BoundaryValue{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T + i = I[dim(e.bId)] + j = I[3-dim(e.bId)] + N_i = size(e.grid)[dim(e.bId)] + return apply_boundary_value(e.op, v[j], i, N_i, region(e.bId)) +end + +function LazyTensors.apply_transpose(e::BoundaryValue{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T + u = selectdim(v,3-dim(e.bId),Int(I[1])) + return apply_boundary_value_transpose(e.op, u, region(e.bId)) +end + +""" + NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} + +Implements the boundary operator `d` as a TensorMapping +""" +struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} + op::D2{T,N,M,K} + grid::EquidistantGrid{2} + bId::CartesianBoundary +end +export NormalDerivative + +# TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? +# Can we give special treatment to TensorMappings that go to a higher dim? +function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer}) + if dim(e.bId) == 1 + return (UnknownDim, domain_size[1]) + elseif dim(e.bId) == 2 + return (domain_size[1], UnknownDim) + end +end +LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],) + +# TODO: Not type stable D:< +# TODO: Make this independent of dimension +function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T + i = I[dim(d.bId)] + j = I[3-dim(d.bId)] + N_i = size(d.grid)[dim(d.bId)] + h_inv = inverse_spacing(d.grid)[dim(d.bId)] + return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId)) +end + +function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T + u = selectdim(v,3-dim(d.bId),Int(I[1])) + return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId)) +end + +""" + BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} + +Implements the boundary operator `q` as a TensorOperator +""" +struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} + op::D2{T,N,M,K} + grid::EquidistantGrid{2} + bId::CartesianBoundary +end +export BoundaryQuadrature + +# TODO: Make this independent of dimension +function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T + h = spacing(q.grid)[3-dim(q.bId)] + N = size(v) + return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) +end + +LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I) + + + + +struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end + +function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} + e = boundary_value(L, Bid()) + d = normal_derivative(L, Bid()) + Hᵧ = boundary_quadrature(L, Bid()) + H⁻¹ = inverse_quadrature(L) + return (-H⁻¹*e*Hᵧ*(d'*v - g))[I] +end + +struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition + tau::Float64 +end + +function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} + e = boundary_value(L, Bid()) + d = normal_derivative(L, Bid()) + Hᵧ = boundary_quadrature(L, Bid()) + H⁻¹ = inverse_quadrature(L) + return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I] + # Need to handle scalar multiplication and addition of TensorMapping +end + +# function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D + # return apply(s.L, v, i) + +# sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + +# sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + +# sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + +# sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) +# end