diff test/SbpOperators/volumeops/volume_operator_test.jl @ 1888:eb70a0941cd6 allocation_testing

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 03 Feb 2023 23:02:46 +0100
parents 03c217c50d7c
children 7d52c4835d15
line wrap: on
line diff
--- a/test/SbpOperators/volumeops/volume_operator_test.jl	Thu Apr 07 17:02:51 2022 +0200
+++ b/test/SbpOperators/volumeops/volume_operator_test.jl	Fri Feb 03 23:02:46 2023 +0100
@@ -7,120 +7,76 @@
 
 import Sbplib.SbpOperators.Stencil
 import Sbplib.SbpOperators.VolumeOperator
-import Sbplib.SbpOperators.volume_operator
 import Sbplib.SbpOperators.odd
 import Sbplib.SbpOperators.even
 
+
 @testset "VolumeOperator" begin
     inner_stencil = CenteredStencil(1/4, 2/4, 1/4)
-    closure_stencils = (Stencil(1/2, 1/2; center=1), Stencil(0.,1.; center=2))
-    g_1D = EquidistantGrid(11,0.,1.)
-    g_2D = EquidistantGrid((11,12),(0.,0.),(1.,1.))
-    g_3D = EquidistantGrid((11,12,10),(0.,0.,0.),(1.,1.,1.))
+    closure_stencils = (Stencil(1/2, 1/2; center=1), Stencil(2.,1.; center=2))
+    g = EquidistantGrid(11,0.,1.)
+
     @testset "Constructors" begin
-        @testset "1D" begin
-            op = VolumeOperator(inner_stencil,closure_stencils,(11,),even)
-            @test op == VolumeOperator(g_1D,inner_stencil,closure_stencils,even)
-            @test op == volume_operator(g_1D,inner_stencil,closure_stencils,even,1)
-            @test op isa LazyTensor{T,1,1} where T
-        end
-        @testset "2D" begin
-            op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1)
-            op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2)
-            Ix = IdentityTensor{Float64}((11,))
-            Iy = IdentityTensor{Float64}((12,))
-            @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy
-            @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even)
-            @test op_x isa LazyTensor{T,2,2} where T
-            @test op_y isa LazyTensor{T,2,2} where T
-        end
-        @testset "3D" begin
-            op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1)
-            op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2)
-            op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3)
-            Ix = IdentityTensor{Float64}((11,))
-            Iy = IdentityTensor{Float64}((12,))
-            Iz = IdentityTensor{Float64}((10,))
-            @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy⊗Iz
-            @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even)⊗Iz
-            @test op_z == Ix⊗Iy⊗VolumeOperator(inner_stencil,closure_stencils,(10,),even)
-            @test op_x isa LazyTensor{T,3,3} where T
-            @test op_y isa LazyTensor{T,3,3} where T
-            @test op_z isa LazyTensor{T,3,3} where T
-        end
+        op = VolumeOperator(inner_stencil,closure_stencils,(11,),even)
+        @test op == VolumeOperator(g,inner_stencil,closure_stencils,even)
+        @test op isa LazyTensor{T,1,1} where T
     end
 
     @testset "Sizes" begin
-        @testset "1D" begin
-            op = volume_operator(g_1D,inner_stencil,closure_stencils,even,1)
-            @test range_size(op) == domain_size(op) == size(g_1D)
-        end
-
-        @testset "2D" begin
-            op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1)
-            op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2)
-            @test range_size(op_y) == domain_size(op_y) ==
-                  range_size(op_x) == domain_size(op_x) == size(g_2D)
-        end
-        @testset "3D" begin
-            op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1)
-            op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2)
-            op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3)
-            @test range_size(op_z) == domain_size(op_z) ==
-                  range_size(op_y) == domain_size(op_y) ==
-                  range_size(op_x) == domain_size(op_x) == size(g_3D)
-        end
+        op = VolumeOperator(g,inner_stencil,closure_stencils,even)
+        @test range_size(op) == domain_size(op) == size(g)
     end
 
-    op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1)
-    op_y = volume_operator(g_2D,inner_stencil,closure_stencils,odd,2)
-    v = zeros(size(g_2D))
-    Nx = size(g_2D)[1]
-    Ny = size(g_2D)[2]
-    for i = 1:Nx
-        v[i,:] .= i
+
+    op_even = VolumeOperator(g, inner_stencil, closure_stencils, even)
+    op_odd =  VolumeOperator(g, inner_stencil, closure_stencils, odd)
+
+    N = size(g)[1]
+    v = rand(N)
+
+    r_even = copy(v)
+    r_odd  = copy(v)
+
+    r_even[1] = (v[1] + v[2])/2
+    r_odd[1]  = (v[1] + v[2])/2
+
+    r_even[2] = 2v[1] + v[2]
+    r_odd[2]  = 2v[1] + v[2]
+
+    for i ∈ 3:N-2
+        r_even[i] = (v[i-1] + 2v[i] + v[i+1])/4
+        r_odd[i]  = (v[i-1] + 2v[i] + v[i+1])/4
     end
-    rx = copy(v)
-    rx[1,:] .= 1.5
-    rx[Nx,:] .= (2*Nx-1)/2
-    ry = copy(v)
-    ry[:,Ny-1:Ny] = -v[:,Ny-1:Ny]
+
+    r_even[N-1] =  v[N-1] + 2v[N]
+    r_odd[N-1]  = -v[N-1] - 2v[N]
+
+    r_even[N] =  (v[N-1] + v[N])/2
+    r_odd[N]  = -(v[N-1] + v[N])/2
+
 
     @testset "Application" begin
-        @test op_x*v ≈ rx rtol = 1e-14
-        @test op_y*v ≈ ry rtol = 1e-14
+        @test op_even*v ≈ r_even
+        @test op_odd*v  ≈ r_odd
 
-        @test (op_x*rand(ComplexF64,size(g_2D)))[2,2] isa ComplexF64
+        @test (op_even*rand(ComplexF64,size(g)))[2] isa ComplexF64
     end
 
     @testset "Regions" begin
-        @test (op_x*v)[Index(1,Lower),Index(3,Interior)] ≈ rx[1,3] rtol = 1e-14
-        @test (op_x*v)[Index(2,Lower),Index(3,Interior)] ≈ rx[2,3] rtol = 1e-14
-        @test (op_x*v)[Index(6,Interior),Index(3,Interior)] ≈ rx[6,3] rtol = 1e-14
-        @test (op_x*v)[Index(10,Upper),Index(3,Interior)] ≈ rx[10,3] rtol = 1e-14
-        @test (op_x*v)[Index(11,Upper),Index(3,Interior)] ≈ rx[11,3] rtol = 1e-14
-
-        @test_throws BoundsError (op_x*v)[Index(3,Lower),Index(3,Interior)]
-        @test_throws BoundsError (op_x*v)[Index(9,Upper),Index(3,Interior)]
+        @test (op_even*v)[Index(1,Lower)]    ≈ r_even[1]
+        @test (op_even*v)[Index(2,Lower)]    ≈ r_even[2]
+        @test (op_even*v)[Index(6,Interior)] ≈ r_even[6]
+        @test (op_even*v)[Index(10,Upper)]   ≈ r_even[10]
+        @test (op_even*v)[Index(11,Upper)]   ≈ r_even[11]
 
-        @test (op_y*v)[Index(3,Interior),Index(1,Lower)] ≈ ry[3,1] rtol = 1e-14
-        @test (op_y*v)[Index(3,Interior),Index(2,Lower)] ≈ ry[3,2] rtol = 1e-14
-        @test (op_y*v)[Index(3,Interior),Index(6,Interior)] ≈ ry[3,6] rtol = 1e-14
-        @test (op_y*v)[Index(3,Interior),Index(11,Upper)] ≈ ry[3,11] rtol = 1e-14
-        @test (op_y*v)[Index(3,Interior),Index(12,Upper)] ≈ ry[3,12] rtol = 1e-14
-
-        @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(10,Upper)]
-        @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(3,Lower)]
+        @test_throws BoundsError (op_even*v)[Index(3,Lower)]
+        @test_throws BoundsError (op_even*v)[Index(9,Upper)]
     end
 
     @testset "Inferred" begin
-        @test_skip @inferred apply(op_x, v,1,1)
-        @inferred apply(op_x, v, Index(1,Lower),Index(1,Lower))
-        @inferred apply(op_x, v, Index(6,Interior),Index(1,Lower))
-        @inferred apply(op_x, v, Index(11,Upper),Index(1,Lower))
-        @test_skip @inferred apply(op_y, v,1,1)
-        @inferred apply(op_y, v, Index(1,Lower),Index(1,Lower))
-        @inferred apply(op_y, v, Index(1,Lower),Index(6,Interior))
-        @inferred apply(op_y, v, Index(1,Lower),Index(11,Upper))
+        @inferred apply(op_even, v, 1)
+        @inferred apply(op_even, v, Index(1,Lower))
+        @inferred apply(op_even, v, Index(6,Interior))
+        @inferred apply(op_even, v, Index(11,Upper))
     end
 end