Mercurial > repos > public > sbplib_julia
diff test/testSbpOperators.jl @ 610:e40e7439d1b4 feature/volume_and_boundary_operators
Add a general boundary operator and make BoundaryRestriction a specialization of it.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 05 Dec 2020 18:12:31 +0100 |
parents | 8e4f86c4bf75 |
children | 1db945cba3a2 |
line wrap: on
line diff
--- a/test/testSbpOperators.jl Wed Dec 02 09:35:14 2020 +0100 +++ b/test/testSbpOperators.jl Sat Dec 05 18:12:31 2020 +0100 @@ -181,58 +181,58 @@ @test Qinv*v == Qinv'*v end -@testset "BoundaryRestrictrion" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +@testset "BoundaryOperator" begin + closure_stencil = SbpOperators.Stencil((0,2), (2.,1.,3.)) g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) @testset "Constructors" begin @testset "1D" begin - e_l = BoundaryRestriction{Lower}(op.eClosure,size(g_1D)[1]) - @test e_l == BoundaryRestriction(g_1D,op.eClosure,Lower()) - @test e_l == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) - @test e_l isa TensorMapping{T,0,1} where T + op_l = BoundaryOperator{Lower}(closure_stencil,size(g_1D)[1]) + @test op_l == BoundaryOperator(g_1D,closure_stencil,Lower()) + @test op_l == boundary_operator(g_1D,closure_stencil,CartesianBoundary{1,Lower}()) + @test op_l isa TensorMapping{T,0,1} where T - e_r = BoundaryRestriction{Upper}(op.eClosure,size(g_1D)[1]) - @test e_r == BoundaryRestriction(g_1D,op.eClosure,Upper()) - @test e_r == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) - @test e_r isa TensorMapping{T,0,1} where T + op_r = BoundaryOperator{Upper}(closure_stencil,size(g_1D)[1]) + @test op_r == BoundaryRestriction(g_1D,closure_stencil,Upper()) + @test op_r == boundary_operator(g_1D,closure_stencil,CartesianBoundary{1,Upper}()) + @test op_r isa TensorMapping{T,0,1} where T end @testset "2D" begin - e_w = boundary_restriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) + e_w = boundary_operator(g_2D,closure_stencil,CartesianBoundary{1,Upper}()) @test e_w isa InflatedTensorMapping @test e_w isa TensorMapping{T,1,2} where T end end - e_l = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) - e_r = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) + op_l = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Lower}()) + op_r = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Upper}()) - e_w = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) - e_e = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) - e_s = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) - e_n = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) + op_w = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Lower}()) + op_e = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Upper}()) + op_s = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Lower}()) + op_n = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Upper}()) @testset "Sizes" begin @testset "1D" begin - @test domain_size(e_l) == (11,) - @test domain_size(e_r) == (11,) + @test domain_size(op_l) == (11,) + @test domain_size(op_r) == (11,) - @test range_size(e_l) == () - @test range_size(e_r) == () + @test range_size(op_l) == () + @test range_size(op_r) == () end @testset "2D" begin - @test domain_size(e_w) == (11,15) - @test domain_size(e_e) == (11,15) - @test domain_size(e_s) == (11,15) - @test domain_size(e_n) == (11,15) + @test domain_size(op_w) == (11,15) + @test domain_size(op_e) == (11,15) + @test domain_size(op_s) == (11,15) + @test domain_size(op_n) == (11,15) - @test range_size(e_w) == (15,) - @test range_size(e_e) == (15,) - @test range_size(e_s) == (11,) - @test range_size(e_n) == (11,) + @test range_size(op_w) == (15,) + @test range_size(op_e) == (15,) + @test range_size(op_s) == (11,) + @test range_size(op_n) == (11,) end end @@ -241,6 +241,126 @@ @testset "1D" begin v = evalOn(g_1D,x->1+x^2) u = fill(3.124) + @test (op_l*v)[] == 2*v[1] + v[2] + 3*v[3] + @test (op_r*v)[] == 2*v[end] + v[end-1] + 3*v[end-2] + @test (op_r*v)[1] == 2*v[end] + v[end-1] + 3*v[end-2] + @test op_l'*u == [2*u[]; u[]; 3*u[]; zeros(8)] + @test op_r'*u == [zeros(8); 3*u[]; u[]; 2*u[]] + end + + @testset "2D" begin + v = rand(size(g_2D)...) + u = fill(3.124) + @test op_w*v ≈ 2*v[1,:] + v[2,:] + 3*v[3,:] rtol = 1e-14 + @test op_e*v ≈ 2*v[end,:] + v[end-1,:] + 3*v[end-2,:] rtol = 1e-14 + @test op_s*v ≈ 2*v[:,1] + v[:,2] + 3*v[:,3] rtol = 1e-14 + @test op_n*v ≈ 2*v[:,end] + v[:,end-1] + 3*v[:,end-2] rtol = 1e-14 + + + g_x = rand(size(g_2D)[1]) + g_y = rand(size(g_2D)[2]) + + G_w = zeros(Float64, size(g_2D)...) + G_w[1,:] = 2*g_y + G_w[2,:] = g_y + G_w[3,:] = 3*g_y + + G_e = zeros(Float64, size(g_2D)...) + G_e[end,:] = 2*g_y + G_e[end-1,:] = g_y + G_e[end-2,:] = 3*g_y + + G_s = zeros(Float64, size(g_2D)...) + G_s[:,1] = 2*g_x + G_s[:,2] = g_x + G_s[:,3] = 3*g_x + + G_n = zeros(Float64, size(g_2D)...) + G_n[:,end] = 2*g_x + G_n[:,end-1] = g_x + G_n[:,end-2] = 3*g_x + + @test op_w'*g_y == G_w + @test op_e'*g_y == G_e + @test op_s'*g_x == G_s + @test op_n'*g_x == G_n + end + + @testset "Regions" begin + u = fill(3.124) + @test (op_l'*u)[Index(1,Lower)] == 2*u[] + @test (op_l'*u)[Index(2,Lower)] == u[] + @test (op_l'*u)[Index(6,Interior)] == 0 + @test (op_l'*u)[Index(10,Upper)] == 0 + @test (op_l'*u)[Index(11,Upper)] == 0 + + @test (op_r'*u)[Index(1,Lower)] == 0 + @test (op_r'*u)[Index(2,Lower)] == 0 + @test (op_r'*u)[Index(6,Interior)] == 0 + @test (op_r'*u)[Index(10,Upper)] == u[] + @test (op_r'*u)[Index(11,Upper)] == 2*u[] + end + end + + @testset "Inferred" begin + v = ones(Float64, 11) + u = fill(1.) + + @inferred apply(op_l, v) + @inferred apply(op_r, v) + + @inferred apply_transpose(op_l, u, 4) + @inferred apply_transpose(op_l, u, Index(1,Lower)) + @inferred apply_transpose(op_l, u, Index(2,Lower)) + @inferred apply_transpose(op_l, u, Index(6,Interior)) + @inferred apply_transpose(op_l, u, Index(10,Upper)) + @inferred apply_transpose(op_l, u, Index(11,Upper)) + + @inferred apply_transpose(op_r, u, 4) + @inferred apply_transpose(op_r, u, Index(1,Lower)) + @inferred apply_transpose(op_r, u, Index(2,Lower)) + @inferred apply_transpose(op_r, u, Index(6,Interior)) + @inferred apply_transpose(op_r, u, Index(10,Upper)) + @inferred apply_transpose(op_r, u, Index(11,Upper)) + end + +end + +@testset "BoundaryRestriction" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + g_1D = EquidistantGrid(11, 0.0, 1.0) + g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) + + @testset "Constructors" begin + @testset "1D" begin + e_l = BoundaryRestriction(g_1D,op.eClosure,Lower()) + @test e_l == BoundaryRestriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) + @test e_l == BoundaryOperator(g_1D,op.eClosure,Lower()) + @test e_l isa BoundaryOperator{T,Lower} where T + @test e_l isa TensorMapping{T,0,1} where T + + e_r = BoundaryRestriction(g_1D,op.eClosure,Upper()) + @test e_r == BoundaryRestriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) + @test e_r == BoundaryOperator(g_1D,op.eClosure,Upper()) + @test e_r isa BoundaryOperator{T,Upper} where T + @test e_r isa TensorMapping{T,0,1} where T + end + + @testset "2D" begin + e_w = BoundaryRestriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) + @test e_w isa InflatedTensorMapping + @test e_w isa TensorMapping{T,1,2} where T + end + end + + @testset "Application" begin + @testset "1D" begin + e_l = BoundaryRestriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) + e_r = BoundaryRestriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) + + v = evalOn(g_1D,x->1+x^2) + u = fill(3.124) + @test (e_l*v)[] == v[1] @test (e_r*v)[] == v[end] @test (e_r*v)[1] == v[end] @@ -249,6 +369,11 @@ end @testset "2D" begin + e_w = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) + e_e = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) + e_s = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) + e_n = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) + v = rand(11, 15) u = fill(3.124) @@ -278,45 +403,7 @@ @test e_s'*g_x == G_s @test e_n'*g_x == G_n end - - @testset "Regions" begin - u = fill(3.124) - @test (e_l'*u)[Index(1,Lower)] == 3.124 - @test (e_l'*u)[Index(2,Lower)] == 0 - @test (e_l'*u)[Index(6,Interior)] == 0 - @test (e_l'*u)[Index(10,Upper)] == 0 - @test (e_l'*u)[Index(11,Upper)] == 0 - - @test (e_r'*u)[Index(1,Lower)] == 0 - @test (e_r'*u)[Index(2,Lower)] == 0 - @test (e_r'*u)[Index(6,Interior)] == 0 - @test (e_r'*u)[Index(10,Upper)] == 0 - @test (e_r'*u)[Index(11,Upper)] == 3.124 - end end - - @testset "Inferred" begin - v = ones(Float64, 11) - u = fill(1.) - - @inferred apply(e_l, v) - @inferred apply(e_r, v) - - @inferred apply_transpose(e_l, u, 4) - @inferred apply_transpose(e_l, u, Index(1,Lower)) - @inferred apply_transpose(e_l, u, Index(2,Lower)) - @inferred apply_transpose(e_l, u, Index(6,Interior)) - @inferred apply_transpose(e_l, u, Index(10,Upper)) - @inferred apply_transpose(e_l, u, Index(11,Upper)) - - @inferred apply_transpose(e_r, u, 4) - @inferred apply_transpose(e_r, u, Index(1,Lower)) - @inferred apply_transpose(e_r, u, Index(2,Lower)) - @inferred apply_transpose(e_r, u, Index(6,Interior)) - @inferred apply_transpose(e_r, u, Index(10,Upper)) - @inferred apply_transpose(e_r, u, Index(11,Upper)) - end - end # # @testset "NormalDerivative" begin