diff src/SbpOperators/volumeops/volume_operator.jl @ 1047:d12ab8120d29 feature/first_derivative

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 23 Mar 2022 12:43:03 +0100
parents 1ba8a398af9c
children 52f07c77299d 3bb94ce74697 2b6298905692
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/volume_operator.jl	Wed Mar 23 12:39:35 2022 +0100
+++ b/src/SbpOperators/volumeops/volume_operator.jl	Wed Mar 23 12:43:03 2022 +0100
@@ -6,7 +6,7 @@
 the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the
 corresponding `VolumeOperator` tensor mapping is returned. When `Dim>1`, the
 returned operator is the appropriate outer product of a one-dimensional
-operators and `IdentityMapping`s, e.g for `Dim=3` the volume operator in the
+operators and `IdentityTensor`s, e.g for `Dim=3` the volume operator in the
 y-direction is `I⊗op⊗I`.
 """
 function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction)
@@ -14,9 +14,9 @@
 
     # Create 1D volume operator in along coordinate direction
     op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity)
-    # Create 1D IdentityMappings for each coordinate direction
+    # Create 1D IdentityTensors for each coordinate direction
     one_d_grids = restrict.(Ref(grid), Tuple(1:dimension(grid)))
-    Is = IdentityMapping{eltype(grid)}.(size.(one_d_grids))
+    Is = IdentityTensor{eltype(grid)}.(size.(one_d_grids))
     # Formulate the correct outer product sequence of the identity mappings and
     # the volume operator
     parts = Base.setindex(Is, op, direction)
@@ -27,7 +27,7 @@
     VolumeOperator{T,N,M,K} <: TensorOperator{T,1}
 Implements a one-dimensional constant coefficients volume operator
 """
-struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1}
+struct VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1}
     inner_stencil::Stencil{T,N}
     closure_stencils::NTuple{M,Stencil{T,K}}
     size::NTuple{1,Int}
@@ -43,19 +43,19 @@
 LazyTensors.range_size(op::VolumeOperator) = op.size
 LazyTensors.domain_size(op::VolumeOperator) = op.size
 
-function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Lower})
     return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i))
 end
 
-function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Interior})
     return apply_stencil(op.inner_stencil, v, Int(i))
 end
 
-function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Upper}) where T
+function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Upper})
     return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i))
 end
 
-function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i) where T
+function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i)
     r = getregion(i, closure_size(op), op.size[1])
     return LazyTensors.apply(op, v, Index(i, r))
 end