Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/volumeops/volume_operator.jl @ 1047:d12ab8120d29 feature/first_derivative
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 23 Mar 2022 12:43:03 +0100 |
parents | 1ba8a398af9c |
children | 52f07c77299d 3bb94ce74697 2b6298905692 |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/volume_operator.jl Wed Mar 23 12:39:35 2022 +0100 +++ b/src/SbpOperators/volumeops/volume_operator.jl Wed Mar 23 12:43:03 2022 +0100 @@ -6,7 +6,7 @@ the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the corresponding `VolumeOperator` tensor mapping is returned. When `Dim>1`, the returned operator is the appropriate outer product of a one-dimensional -operators and `IdentityMapping`s, e.g for `Dim=3` the volume operator in the +operators and `IdentityTensor`s, e.g for `Dim=3` the volume operator in the y-direction is `I⊗op⊗I`. """ function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction) @@ -14,9 +14,9 @@ # Create 1D volume operator in along coordinate direction op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity) - # Create 1D IdentityMappings for each coordinate direction + # Create 1D IdentityTensors for each coordinate direction one_d_grids = restrict.(Ref(grid), Tuple(1:dimension(grid))) - Is = IdentityMapping{eltype(grid)}.(size.(one_d_grids)) + Is = IdentityTensor{eltype(grid)}.(size.(one_d_grids)) # Formulate the correct outer product sequence of the identity mappings and # the volume operator parts = Base.setindex(Is, op, direction) @@ -27,7 +27,7 @@ VolumeOperator{T,N,M,K} <: TensorOperator{T,1} Implements a one-dimensional constant coefficients volume operator """ -struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1} +struct VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} inner_stencil::Stencil{T,N} closure_stencils::NTuple{M,Stencil{T,K}} size::NTuple{1,Int} @@ -43,19 +43,19 @@ LazyTensors.range_size(op::VolumeOperator) = op.size LazyTensors.domain_size(op::VolumeOperator) = op.size -function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Lower}) where T +function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Lower}) return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) end -function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Interior}) where T +function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Interior}) return apply_stencil(op.inner_stencil, v, Int(i)) end -function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Upper}) where T +function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Upper}) return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i)) end -function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i) where T +function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i) r = getregion(i, closure_size(op), op.size[1]) return LazyTensors.apply(op, v, Index(i, r)) end