Mercurial > repos > public > sbplib_julia
diff LazyTensor/src/LazyTensor.jl @ 180:b7397ae8afaf boundary_conditions
Move tensor mappings to a package LazyTensor
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 20 Jun 2019 15:23:21 +0200 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LazyTensor/src/LazyTensor.jl Thu Jun 20 15:23:21 2019 +0200 @@ -0,0 +1,165 @@ +module LazyTensor + + +""" + Mapping{T,R,D} + +Describes a mapping of a D dimension tensor to an R dimension tensor. +The action of the mapping is implemented through the method + + apply(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} + +The size of range tensor should be dependent on the size of the domain tensor +and the type should implement the methods + + range_size(::Mapping{T,R,D}, domain_size::NTuple{D,Integer}) where {T,R,D} + domain_size(::Mapping{T,R,D}, range_size::NTuple{R,Integer}) where {T,R,D} + +to allow querying for one or the other. + +Optionally the action of the transpose may be defined through + apply_transpose(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} +""" +abstract type Mapping{T,R,D} end + +""" + apply(t::Mapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {R,D,T} + +Return the result of the mapping for a given index. +""" +function apply end +export apply + +""" + apply_transpose(t::Mapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {R,D,T} + +Return the result of the transposed mapping for a given index. +""" +function apply_transpose end +export apply_transpose + +""" +Return the dimension of the range space of a given mapping +""" +range_dim(::Mapping{T,R,D}) where {T,R,D} = R + +""" +Return the dimension of the domain space of a given mapping +""" +domain_dim(::Mapping{T,R,D}) where {T,R,D} = D + +export range_dim, domain_dim + +""" + range_size(M::Mapping, domain_size) + +Return the resulting range size for the mapping applied to a given domain_size +""" +function range_size end + +""" + domain_size(M::Mapping, range_size) + +Return the resulting domain size for the mapping applied to a given range_size +""" +function domain_size end + +export range_size, domain_size +# TODO: Think about boundschecking! + + +""" + Operator{T,D} + +A `Mapping{T,D,D}` where the range and domain tensor have the same number of +dimensions and the same size. +""" +abstract type Operator{T,D} <: Mapping{T,D,D} end +domain_size(::Operator{T,D}, range_size::NTuple{D,Integer}) where {T,D} = range_size +range_size(::Operator{T,D}, domain_size::NTuple{D,Integer}) where {T,D} = domain_size + + + +""" + MappingTranspose{T,R,D} <: Mapping{T,D,R} + +Struct for lazy transpose of a Mapping. + +If a mapping implements the the `apply_transpose` method this allows working with +the transpose of mapping `m` by using `m'`. `m'` will work as a regular Mapping lazily calling +the appropriate methods of `m`. +""" +struct MappingTranspose{T,R,D} <: Mapping{T,D,R} + tm::Mapping{T,R,D} +end + +# # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? +Base.adjoint(t::Mapping) = MappingTranspose(t) +Base.adjoint(t::MappingTranspose) = t.tm + +apply(tm::MappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::Vararg) where {T,R,D} = apply_transpose(tm.tm, v, I...) +apply_transpose(tm::MappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,D} = apply(tm.tm, v, I...) + +range_size(tmt::MappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, domain_size) +domain_size(tmt::MappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, range_size) + + +""" + Application{T,R,D} <: AbstractArray{T,R} + +Struct for lazy application of a Mapping. Created using `*`. + +Allows the result of a `Mapping` applied to a vector to be treated as an `AbstractArray`. +With a mapping `m` and a vector `v` the Application object can be created by `m*v`. +The actual result will be calcualted when indexing into `m*v`. +""" +struct Application{T,R,D} <: AbstractArray{T,R} + t::Mapping{T,R,D} + o::AbstractArray{T,D} +end + +Base.:*(tm::Mapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = Application(tm,o) + +Base.getindex(ta::Application{T,R,D}, I::Vararg) where {T,R,D} = apply(ta.t, ta.o, I...) +Base.size(ta::Application{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o)) +# TODO: What else is needed to implement the AbstractArray interface? + + +# # We need the associativity to be a→b→c = a→(b→c), which is the case for '→' +Base.:*(args::Union{Mapping{T}, AbstractArray{T}}...) where T = foldr(*,args) +# # Should we overload some other infix binary operator? +# →(tm::Mapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = Application(tm,o) +# TODO: We need to be really careful about good error messages. +# For example what happens if you try to multiply Application with a Mapping(wrong order)? + + + +# struct TensorMappingComposition{T,R,K,D} <: Mapping{T,R,D} +# t1::Mapping{T,R,K} +# t2::Mapping{T,K,D} +# end + +# Base.:∘(s::Mapping{T,R,K}, t::Mapping{T,K,D}) where {T,R,K,D} = TensorMappingComposition(s,t) + +# function range_size(tm::TensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D} +# range_size(tm.t1, domain_size(tm.t2, domain_size)) +# end + +# function domain_size(tm::TensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D} +# domain_size(tm.t1, domain_size(tm.t2, range_size)) +# end + +# function apply(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} +# apply(c.t1, Application(c.t2,v), I...) +# end + +# function apply_transpose(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::Vararg) where {T,R,K,D} +# apply_transpose(c.t2, Application(c.t1',v), I...) +# end + +# # Have i gone too crazy with the type parameters? Maybe they aren't all needed? + +# export → + + +end # module