Mercurial > repos > public > sbplib_julia
diff test/SbpOperators/volumeops/derivatives/second_derivative_test.jl @ 990:b6238afd3bb0 feature/stencil_set_type
Add methods for creating derivative operators in 1D from stencil sets without providing directions
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Mar 2022 13:02:46 +0100 |
parents | 7bf3121c6864 |
children | 5ec49dd2c7c4 |
line wrap: on
line diff
--- a/test/SbpOperators/volumeops/derivatives/second_derivative_test.jl Thu Mar 17 21:31:20 2022 +0100 +++ b/test/SbpOperators/volumeops/derivatives/second_derivative_test.jl Fri Mar 18 13:02:46 2022 +0100 @@ -21,11 +21,12 @@ Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils,1) @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils) @test Dₓₓ == second_derivative(g_1D,stencil_set,1) + @test Dₓₓ == second_derivative(g_1D,stencil_set) @test Dₓₓ isa VolumeOperator end @testset "2D" begin Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1) - D2 = second_derivative(g_1D,inner_stencil,closure_stencils) + D2 = second_derivative(g_1D,inner_stencil,closure_stencils,1) I = IdentityMapping{Float64}(size(g_2D)[2]) @test Dₓₓ == D2⊗I @test Dₓₓ == second_derivative(g_2D,stencil_set,1) @@ -51,9 +52,7 @@ # implies that L*v should be exact for monomials up to order 2. @testset "2nd order" begin stencil_set = StencilSet(operator_path; order=2) - inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) - closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) - Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) + Dₓₓ = second_derivative(g_1D,stencil_set) @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 @@ -64,9 +63,7 @@ # implies that L*v should be exact for monomials up to order 3. @testset "4th order" begin stencil_set = StencilSet(operator_path; order=4) - inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) - closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) - Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) + Dₓₓ = second_derivative(g_1D,stencil_set) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 @@ -92,9 +89,7 @@ # implies that L*v should be exact for binomials up to order 2. @testset "2nd order" begin stencil_set = StencilSet(operator_path; order=2) - inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) - closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) - Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) + Dyy = second_derivative(g_2D,stencil_set,2) @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 @@ -105,9 +100,7 @@ # implies that L*v should be exact for binomials up to order 3. @testset "4th order" begin stencil_set = StencilSet(operator_path; order=4) - inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) - closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) - Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) + Dyy = second_derivative(g_2D,stencil_set,2) # NOTE: high tolerances for checking the "exact" differentiation # due to accumulation of round-off errors/cancellation errors? @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9