Mercurial > repos > public > sbplib_julia
diff SbpOperators/src/Quadrature.jl @ 300:b00eea62c78e
Create 1D tensor mapping for diagonal norm quadratures, and make the multi-dimensional quadrature use those. Move Qudrature from laplace.jl into Quadrature.jl
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 23 Jun 2020 17:32:54 +0200 |
parents | |
children | 417b767c847f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SbpOperators/src/Quadrature.jl Tue Jun 23 17:32:54 2020 +0200 @@ -0,0 +1,76 @@ +# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `Q` of Dim dimension as a TensorMapping +The multi-dimensional tensor operator consists of a tuple of 1D DiagonalQuadrature +tensor operators. +""" +struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} + H::NTuple{Dim,DiagonalQuadrature{T,N,M}} +end +export Quadrature + +LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} + error("not implemented") +end + +LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) + +@inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + @inbounds q = apply(Q.H[1], v , I[1]) + return q +end + +@inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + # Quadrature in x direction + @inbounds vx = view(v, :, Int(I[2])) + @inbounds qx = apply(Q.H[1], vx , I[1]) + # Quadrature in y-direction + @inbounds vy = view(v, Int(I[1]), :) + @inbounds qy = apply(Q.H[2], vy, I[2]) + return qx*qy +end + +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `H` of Dim dimension as a TensorMapping +""" +struct DiagonalQuadrature{T<:Real,N,M} <: TensorOperator{T,1} + h::T # The grid spacing could be included in the stencil already. Preferable? + closure::NTuple{M,T} + #TODO: Write a nice constructor +end + +@inline function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + return @inbounds apply(H, v, I[1]) +end + +LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I) + +@inline LazyTensors.apply(H::DiagonalQuadrature, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds H.h*H.closure[Int(i)]*v[Int(i)] +end +@inline LazyTensors.apply(H::DiagonalQuadrature,v::AbstractVector{T}, i::Index{Upper}) where T + N = length(v); + return @inbounds H.h*H.closure[N-Int(i)+1]v[Int(i)] +end + +@inline LazyTensors.apply(H::DiagonalQuadrature, v::AbstractVector{T}, i::Index{Interior}) where T + return @inbounds H.h*v[Int(i)] +end + +function LazyTensors.apply(H::DiagonalQuadrature, v::AbstractVector{T}, index::Index{Unknown}) where T + N = length(v); + r = getregion(Int(index), closuresize(H), N) + i = Index(Int(index), r) + return LazyTensors.apply(H, v, i) +end +export LazyTensors.apply + +function closuresize(H::DiagonalQuadrature{T<:Real,N,M}) where {T,N,M} + return M +end