diff SbpOperators/src/Quadrature.jl @ 300:b00eea62c78e

Create 1D tensor mapping for diagonal norm quadratures, and make the multi-dimensional quadrature use those. Move Qudrature from laplace.jl into Quadrature.jl
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Tue, 23 Jun 2020 17:32:54 +0200
parents
children 417b767c847f
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/SbpOperators/src/Quadrature.jl	Tue Jun 23 17:32:54 2020 +0200
@@ -0,0 +1,76 @@
+# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings
+"""
+    Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
+
+Implements the quadrature operator `Q` of Dim dimension as a TensorMapping
+The multi-dimensional tensor operator consists of a tuple of 1D DiagonalQuadrature
+tensor operators.
+"""
+struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim}
+    H::NTuple{Dim,DiagonalQuadrature{T,N,M}}
+end
+export Quadrature
+
+LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
+
+function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim}
+    error("not implemented")
+end
+
+LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I)
+
+@inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T
+    @inbounds q = apply(Q.H[1], v , I[1])
+    return q
+end
+
+@inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T
+    # Quadrature in x direction
+    @inbounds vx = view(v, :, Int(I[2]))
+    @inbounds qx = apply(Q.H[1], vx , I[1])
+    # Quadrature in y-direction
+    @inbounds vy = view(v, Int(I[1]), :)
+    @inbounds qy = apply(Q.H[2], vy, I[2])
+    return qx*qy
+end
+
+"""
+    Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
+
+Implements the quadrature operator `H` of Dim dimension as a TensorMapping
+"""
+struct DiagonalQuadrature{T<:Real,N,M} <: TensorOperator{T,1}
+    h::T # The grid spacing could be included in the stencil already. Preferable?
+    closure::NTuple{M,T}
+    #TODO: Write a nice constructor
+end
+
+@inline function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T
+    return @inbounds apply(H, v, I[1])
+end
+
+LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I)
+
+@inline LazyTensors.apply(H::DiagonalQuadrature, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds H.h*H.closure[Int(i)]*v[Int(i)]
+end
+@inline LazyTensors.apply(H::DiagonalQuadrature,v::AbstractVector{T}, i::Index{Upper}) where T
+    N = length(v);
+    return @inbounds H.h*H.closure[N-Int(i)+1]v[Int(i)]
+end
+
+@inline LazyTensors.apply(H::DiagonalQuadrature, v::AbstractVector{T}, i::Index{Interior}) where T
+    return @inbounds H.h*v[Int(i)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature,  v::AbstractVector{T}, index::Index{Unknown}) where T
+    N = length(v);
+    r = getregion(Int(index), closuresize(H), N)
+    i = Index(Int(index), r)
+    return LazyTensors.apply(H, v, i)
+end
+export LazyTensors.apply
+
+function closuresize(H::DiagonalQuadrature{T<:Real,N,M}) where {T,N,M}
+    return M
+end