Mercurial > repos > public > sbplib_julia
diff SbpOperators/test/runtests.jl @ 314:accb0876da12
Move tests for Laplace from DiffOps/test to SbpOperators/test and add test for Secondderivative
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 09 Sep 2020 21:21:35 +0200 |
parents | 4ca3794fffef |
children | 9cc5d1498b2d |
line wrap: on
line diff
--- a/SbpOperators/test/runtests.jl Wed Sep 09 21:20:25 2020 +0200 +++ b/SbpOperators/test/runtests.jl Wed Sep 09 21:21:35 2020 +0200 @@ -1,23 +1,338 @@ +using Test using SbpOperators -using Test +using Grids +using RegionIndices +using LazyTensors + +# @testset "apply_quadrature" begin +# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# h = 0.5 +# +# @test apply_quadrature(op, h, 1.0, 10, 100) == h +# +# N = 10 +# qc = op.quadratureClosure +# q = h.*(qc..., ones(N-2*closuresize(op))..., reverse(qc)...) +# @assert length(q) == N +# +# for i ∈ 1:N +# @test apply_quadrature(op, h, 1.0, i, N) == q[i] +# end +# +# v = [2.,3.,2.,4.,5.,4.,3.,4.,5.,4.5] +# for i ∈ 1:N +# @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] +# end +# end + +@testset "SecondDerivative" begin + op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + L = 3.5 + g = EquidistantGrid((101,), (0.0,), (L,)) + h_inv = inverse_spacing(g) + h = 1/h_inv[1]; + Dₓₓ = SecondDerivative(h_inv[1],op.innerStencil,op.closureStencils,op.parity) + + f0(x::Float64) = 1. + f1(x::Float64) = x + f2(x::Float64) = 1/2*x^2 + f3(x::Float64) = 1/6*x^3 + f4(x::Float64) = 1/24*x^4 + f5(x::Float64) = sin(x) + f5ₓₓ(x::Float64) = -f5(x) + + v0 = evalOn(g,f0) + v1 = evalOn(g,f1) + v2 = evalOn(g,f2) + v3 = evalOn(g,f3) + v4 = evalOn(g,f4) + v5 = evalOn(g,f5) -@testset "apply_quadrature" begin + @test Dₓₓ isa TensorOperator{T,1} where T + @test Dₓₓ' isa TensorMapping{T,1,1} where T + + # TODO: Should perhaps set tolerance level for isapporx instead? + # Are these tolerance levels resonable or should tests be constructed + # differently? + equalitytol = 0.5*1e-10 + accuracytol = 0.5*1e-3 + # 4th order interior stencil, 2nd order boundary stencil, + # implies that L*v should be exact for v - monomial up to order 3. + # Exact differentiation is measured point-wise. For other grid functions + # the error is measured in the l2-norm. + @test all(abs.(collect(Dₓₓ*v0)) .<= equalitytol) + @test all(abs.(collect(Dₓₓ*v1)) .<= equalitytol) + @test all(abs.((collect(Dₓₓ*v2) - v0)) .<= equalitytol) + @test all(abs.((collect(Dₓₓ*v3) - v1)) .<= equalitytol) + e4 = collect(Dₓₓ*v4) - v2 + e5 = collect(Dₓₓ*v5) + v5 + @test sqrt(h*sum(collect(e4.^2))) <= accuracytol + @test sqrt(h*sum(collect(e5.^2))) <= accuracytol +end + +@testset "Laplace2D" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") - h = 0.5 + Lx = 1.5 + Ly = 3.2 + g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) + + h_inv = inverse_spacing(g) + h = spacing(g) + D_xx = SecondDerivative(h_inv[1],op.innerStencil,op.closureStencils,op.parity) + D_yy = SecondDerivative(h_inv[2],op.innerStencil,op.closureStencils,op.parity) + L = Laplace((D_xx,D_yy)) - @test apply_quadrature(op, h, 1.0, 10, 100) == h + f0(x::Float64,y::Float64) = 2. + f1(x::Float64,y::Float64) = x+y + f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 + f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 + f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 + f5(x::Float64,y::Float64) = sin(x) + cos(y) + f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) + + v0 = evalOn(g,f0) + v1 = evalOn(g,f1) + v2 = evalOn(g,f2) + v3 = evalOn(g,f3) + v4 = evalOn(g,f4) + v5 = evalOn(g,f5) + v5ₓₓ = evalOn(g,f5ₓₓ) + + @test L isa TensorOperator{T,2} where T + @test L' isa TensorMapping{T,2,2} where T - N = 10 - qc = op.quadratureClosure - q = h.*(qc..., ones(N-2*closuresize(op))..., reverse(qc)...) - @assert length(q) == N - - for i ∈ 1:N - @test apply_quadrature(op, h, 1.0, i, N) == q[i] - end - - v = [2.,3.,2.,4.,5.,4.,3.,4.,5.,4.5] - for i ∈ 1:N - @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] - end + # TODO: Should perhaps set tolerance level for isapporx instead? + # Are these tolerance levels resonable or should tests be constructed + # differently? + equalitytol = 0.5*1e-10 + accuracytol = 0.5*1e-3 + # 4th order interior stencil, 2nd order boundary stencil, + # implies that L*v should be exact for v - monomial up to order 3. + # Exact differentiation is measured point-wise. For other grid functions + # the error is measured in the H-norm. + @test all(abs.(collect(L*v0)) .<= equalitytol) + @test all(abs.(collect(L*v1)) .<= equalitytol) + @test all(collect(L*v2) .≈ v0) # Seems to be more accurate + @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) + e4 = collect(L*v4) - v2 + e5 = collect(L*v5) - v5ₓₓ + @test sqrt(prod(h)*sum(collect(e4.^2))) <= accuracytol + @test sqrt(prod(h)*sum(collect(e5.^2))) <= accuracytol end +# +# @testset "Quadrature" begin +# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# Lx = 2.3 +# Ly = 5.2 +# g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) +# H = Quadrature(op,g) +# v = ones(Float64, size(g)) +# +# @test H isa TensorOperator{T,2} where T +# @test H' isa TensorMapping{T,2,2} where T +# @test sum(collect(H*v)) ≈ (Lx*Ly) +# @test collect(H*v) == collect(H'*v) +# end +# +# @testset "InverseQuadrature" begin +# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# Lx = 7.3 +# Ly = 8.2 +# g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) +# H = Quadrature(op,g) +# Hinv = InverseQuadrature(op,g) +# v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) +# +# @test Hinv isa TensorOperator{T,2} where T +# @test Hinv' isa TensorMapping{T,2,2} where T +# @test collect(Hinv*H*v) ≈ v +# @test collect(Hinv*v) == collect(Hinv'*v) +# end +# +# @testset "BoundaryValue" begin +# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) +# +# e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) +# e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) +# e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) +# e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) +# +# v = zeros(Float64, 4, 5) +# v[:,5] = [1, 2, 3,4] +# v[:,4] = [1, 2, 3,4] +# v[:,3] = [4, 5, 6, 7] +# v[:,2] = [7, 8, 9, 10] +# v[:,1] = [10, 11, 12, 13] +# +# @test e_w isa TensorMapping{T,2,1} where T +# @test e_w' isa TensorMapping{T,1,2} where T +# +# @test domain_size(e_w, (3,2)) == (2,) +# @test domain_size(e_e, (3,2)) == (2,) +# @test domain_size(e_s, (3,2)) == (3,) +# @test domain_size(e_n, (3,2)) == (3,) +# +# @test size(e_w'*v) == (5,) +# @test size(e_e'*v) == (5,) +# @test size(e_s'*v) == (4,) +# @test size(e_n'*v) == (4,) +# +# @test collect(e_w'*v) == [10,7,4,1.0,1] +# @test collect(e_e'*v) == [13,10,7,4,4.0] +# @test collect(e_s'*v) == [10,11,12,13.0] +# @test collect(e_n'*v) == [1,2,3,4.0] +# +# g_x = [1,2,3,4.0] +# g_y = [5,4,3,2,1.0] +# +# G_w = zeros(Float64, (4,5)) +# G_w[1,:] = g_y +# +# G_e = zeros(Float64, (4,5)) +# G_e[4,:] = g_y +# +# G_s = zeros(Float64, (4,5)) +# G_s[:,1] = g_x +# +# G_n = zeros(Float64, (4,5)) +# G_n[:,5] = g_x +# +# @test size(e_w*g_y) == (UnknownDim,5) +# @test size(e_e*g_y) == (UnknownDim,5) +# @test size(e_s*g_x) == (4,UnknownDim) +# @test size(e_n*g_x) == (4,UnknownDim) +# +# # These tests should be moved to where they are possible (i.e we know what the grid should be) +# @test_broken collect(e_w*g_y) == G_w +# @test_broken collect(e_e*g_y) == G_e +# @test_broken collect(e_s*g_x) == G_s +# @test_broken collect(e_n*g_x) == G_n +# end +# +# @testset "NormalDerivative" begin +# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) +# +# d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) +# d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) +# d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) +# d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) +# +# +# v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) +# v∂x = evalOn(g, (x,y)-> 2*x + y) +# v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) +# +# @test d_w isa TensorMapping{T,2,1} where T +# @test d_w' isa TensorMapping{T,1,2} where T +# +# @test domain_size(d_w, (3,2)) == (2,) +# @test domain_size(d_e, (3,2)) == (2,) +# @test domain_size(d_s, (3,2)) == (3,) +# @test domain_size(d_n, (3,2)) == (3,) +# +# @test size(d_w'*v) == (6,) +# @test size(d_e'*v) == (6,) +# @test size(d_s'*v) == (5,) +# @test size(d_n'*v) == (5,) +# +# @test collect(d_w'*v) ≈ v∂x[1,:] +# @test collect(d_e'*v) ≈ v∂x[5,:] +# @test collect(d_s'*v) ≈ v∂y[:,1] +# @test collect(d_n'*v) ≈ v∂y[:,6] +# +# +# d_x_l = zeros(Float64, 5) +# d_x_u = zeros(Float64, 5) +# for i ∈ eachindex(d_x_l) +# d_x_l[i] = op.dClosure[i-1] +# d_x_u[i] = -op.dClosure[length(d_x_u)-i] +# end +# +# d_y_l = zeros(Float64, 6) +# d_y_u = zeros(Float64, 6) +# for i ∈ eachindex(d_y_l) +# d_y_l[i] = op.dClosure[i-1] +# d_y_u[i] = -op.dClosure[length(d_y_u)-i] +# end +# +# function prod_matrix(x,y) +# G = zeros(Float64, length(x), length(y)) +# for I ∈ CartesianIndices(G) +# G[I] = x[I[1]]*y[I[2]] +# end +# +# return G +# end +# +# g_x = [1,2,3,4.0,5] +# g_y = [5,4,3,2,1.0,11] +# +# G_w = prod_matrix(d_x_l, g_y) +# G_e = prod_matrix(d_x_u, g_y) +# G_s = prod_matrix(g_x, d_y_l) +# G_n = prod_matrix(g_x, d_y_u) +# +# +# @test size(d_w*g_y) == (UnknownDim,6) +# @test size(d_e*g_y) == (UnknownDim,6) +# @test size(d_s*g_x) == (5,UnknownDim) +# @test size(d_n*g_x) == (5,UnknownDim) +# +# # These tests should be moved to where they are possible (i.e we know what the grid should be) +# @test_broken collect(d_w*g_y) ≈ G_w +# @test_broken collect(d_e*g_y) ≈ G_e +# @test_broken collect(d_s*g_x) ≈ G_s +# @test_broken collect(d_n*g_x) ≈ G_n +# end +# +# @testset "BoundaryQuadrature" begin +# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) +# +# H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) +# H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) +# H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) +# H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) +# +# v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) +# +# function get_quadrature(N) +# qc = op.quadratureClosure +# q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) +# @assert length(q) == N +# return q +# end +# +# v_w = v[1,:] +# v_e = v[10,:] +# v_s = v[:,1] +# v_n = v[:,11] +# +# q_x = spacing(g)[1].*get_quadrature(10) +# q_y = spacing(g)[2].*get_quadrature(11) +# +# @test H_w isa TensorOperator{T,1} where T +# +# @test domain_size(H_w, (3,)) == (3,) +# @test domain_size(H_n, (3,)) == (3,) +# +# @test range_size(H_w, (3,)) == (3,) +# @test range_size(H_n, (3,)) == (3,) +# +# @test size(H_w*v_w) == (11,) +# @test size(H_e*v_e) == (11,) +# @test size(H_s*v_s) == (10,) +# @test size(H_n*v_n) == (10,) +# +# @test collect(H_w*v_w) ≈ q_y.*v_w +# @test collect(H_e*v_e) ≈ q_y.*v_e +# @test collect(H_s*v_s) ≈ q_x.*v_s +# @test collect(H_n*v_n) ≈ q_x.*v_n +# +# @test collect(H_w'*v_w) == collect(H_w'*v_w) +# @test collect(H_e'*v_e) == collect(H_e'*v_e) +# @test collect(H_s'*v_s) == collect(H_s'*v_s) +# @test collect(H_n'*v_n) == collect(H_n'*v_n) +# end