Mercurial > repos > public > sbplib_julia
diff src/Grids/mapped_grid.jl @ 1835:a6f28a8b8f3f refactor/lazy_tensors/elementwise_ops
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 09 Jan 2025 12:40:49 +0100 |
parents | f21bfc5f21aa |
children | d91a9f47380f 85f8855473ab 1c58005429fd |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Grids/mapped_grid.jl Thu Jan 09 12:40:49 2025 +0100 @@ -0,0 +1,207 @@ +""" + MappedGrid{T,D} <: Grid{T,D} + +A grid defined by a coordinate mapping from a logical grid to some physical +coordinates. The physical coordinates and the Jacobian are stored as grid +functions corresponding to the logical grid. + +See also: [`logical_grid`](@ref), [`jacobian`](@ref), [`metric_tensor`](@ref). +""" +struct MappedGrid{T,D, GT<:Grid{<:Any,D}, CT<:AbstractArray{T,D}, JT<:AbstractArray{<:AbstractMatrix{<:Any}, D}} <: Grid{T,D} + logical_grid::GT + physicalcoordinates::CT + jacobian::JT + + """ + MappedGrid(logical_grid, physicalcoordinates, jacobian) + + A MappedGrid with the given physical coordinates and jacobian. + """ + function MappedGrid(logical_grid::GT, physicalcoordinates::CT, jacobian::JT) where {T,D, GT<:Grid{<:Any,D}, CT<:AbstractArray{T,D}, JT<:AbstractArray{<:AbstractMatrix{<:Any}, D}} + if !(size(logical_grid) == size(physicalcoordinates) == size(jacobian)) + throw(ArgumentError("Sizes must match")) + end + + if size(first(jacobian)) != (length(first(physicalcoordinates)),D) + throw(ArgumentError("The size of the jacobian must match the dimensions of the grid and coordinates")) + end + + return new{T,D,GT,CT,JT}(logical_grid, physicalcoordinates, jacobian) + end +end + +function Base.:(==)(a::MappedGrid, b::MappedGrid) + same_logical_grid = logical_grid(a) == logical_grid(b) + same_coordinates = collect(a) == collect(b) + same_jacobian = jacobian(a) == jacobian(b) + + return same_logical_grid && same_coordinates && same_jacobian +end + +""" + logical_grid(g::MappedGrid) + +The logical grid of `g`. +""" +logical_grid(g::MappedGrid) = g.logical_grid + +""" + jacobian(g::MappedGrid) + +The Jacobian matrix of `g` as a grid function. +""" +jacobian(g::MappedGrid) = g.jacobian + + +# Indexing interface +Base.getindex(g::MappedGrid, I::Vararg{Int}) = g.physicalcoordinates[I...] +Base.eachindex(g::MappedGrid) = eachindex(g.logical_grid) + +Base.firstindex(g::MappedGrid, d) = firstindex(g.logical_grid, d) +Base.lastindex(g::MappedGrid, d) = lastindex(g.logical_grid, d) + +# Iteration interface +Base.iterate(g::MappedGrid) = iterate(g.physicalcoordinates) +Base.iterate(g::MappedGrid, state) = iterate(g.physicalcoordinates, state) + +Base.IteratorSize(::Type{<:MappedGrid{<:Any, D}}) where D = Base.HasShape{D}() +Base.length(g::MappedGrid) = length(g.logical_grid) +Base.size(g::MappedGrid) = size(g.logical_grid) +Base.size(g::MappedGrid, d) = size(g.logical_grid, d) + +boundary_identifiers(g::MappedGrid) = boundary_identifiers(g.logical_grid) +boundary_indices(g::MappedGrid, id::TensorGridBoundary) = boundary_indices(g.logical_grid, id) + +function boundary_grid(g::MappedGrid, id::TensorGridBoundary) + b_indices = boundary_indices(g.logical_grid, id) + + # Calculate indices of needed jacobian components + D = ndims(g) + all_indices = SVector{D}(1:D) + free_variable_indices = deleteat(all_indices, grid_id(id)) + jacobian_components = (:, free_variable_indices) + + # Create grid function for boundary grid jacobian + boundary_jacobian = componentview((@view g.jacobian[b_indices...]) , jacobian_components...) + boundary_physicalcoordinates = @view g.physicalcoordinates[b_indices...] + + return MappedGrid( + boundary_grid(g.logical_grid, id), + boundary_physicalcoordinates, + boundary_jacobian, + ) +end + + +""" + mapped_grid(x, J, size::Vararg{Int}) + +A `MappedGrid` with a default logical grid on the D-dimensional unit hyper +box [0,1]ᴰ. `x` and `J`are functions to be evaluated on the logical grid +and `size` determines the size of the logical grid. +""" +function mapped_grid(x, J, size::Vararg{Int}) + D = length(size) + lg = equidistant_grid(ntuple(i->0., D), ntuple(i->1., D), size...) + return mapped_grid(lg, x, J) +end + +""" + mapped_grid(lg::Grid, x, J) + +A `MappedGrid` with logical grid `lg`. Physical coordinates and Jacobian are +determined by the functions `x` and `J`. +""" +function mapped_grid(lg::Grid, x, J) + return MappedGrid( + lg, + map(x,lg), + map(J,lg), + ) +end + +""" + metric_tensor(g::MappedGrid) + +The metric tensor of `g` as a grid function. +""" +function metric_tensor(g::MappedGrid) + return map(jacobian(g)) do ∂x∂ξ + ∂x∂ξ'*∂x∂ξ + end +end + +function min_spacing(g::MappedGrid{T,1} where T) + n, = size(g) + + ms = Inf + for i ∈ 1:n-1 + ms = min(ms, norm(g[i+1]-g[i])) + end + + return ms +end + +function min_spacing(g::MappedGrid{T,2} where T) + n, m = size(g) + + ms = Inf + for i ∈ 1:n-1, j ∈ 1:m-1 # loop over each cell of the grid + + ms = min( + ms, + norm(g[i+1,j]-g[i,j]), + norm(g[i,j+1]-g[i,j]), + + norm(g[i+1,j]-g[i+1,j+1]), + norm(g[i,j+1]-g[i+1,j+1]), + + norm(g[i+1,j+1]-g[i,j]), + norm(g[i+1,j]-g[i,j+1]), + ) + # NOTE: This could be optimized to avoid checking all interior edges twice. + end + + return ms +end + +""" + normal(g::MappedGrid, boundary) + +The outward pointing normal as a grid function on the corresponding boundary grid. +""" +function normal(g::MappedGrid, boundary) + b_indices = boundary_indices(g, boundary) + σ = _boundary_sign(component_type(g), boundary) + + # TODO: Refactor this when `boundary_indices(g, ...)` has been made iterable. + return map(jacobian(g)[b_indices...]) do ∂x∂ξ + ∂ξ∂x = inv(∂x∂ξ) + k = grid_id(boundary) + σ*∂ξ∂x[k,:]/norm(∂ξ∂x[k,:]) + end +end + +""" + normal(g::MappedGrid, boundary, i...) + +The outward pointing normal to the specified boundary in grid point `i`. +""" +function normal(g::MappedGrid, boundary, i...) + σ = _boundary_sign(component_type(g), boundary) + ∂ξ∂x = inv(jacobian(g)[i...]) + + k = grid_id(boundary) + return σ*∂ξ∂x[k,:]/norm(∂ξ∂x[k,:]) +end + + +function _boundary_sign(T, boundary) + if boundary_id(boundary) == UpperBoundary() + return one(T) + elseif boundary_id(boundary) == LowerBoundary() + return -one(T) + else + throw(ArgumentError("The boundary identifier must be either `LowerBoundary()` or `UpperBoundary()`")) + end +end