Mercurial > repos > public > sbplib_julia
diff test/Grids/mapped_grid_test.jl @ 1695:a4c52ae93b11 feature/grids/manifolds
Merge feature/grids/curvilinear
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 28 Aug 2024 10:35:08 +0200 |
parents | 13a7a4ff49e3 5bf4a35a78c5 |
children | 03894fd7b132 |
line wrap: on
line diff
--- a/test/Grids/mapped_grid_test.jl Wed Aug 21 19:12:28 2024 +0200 +++ b/test/Grids/mapped_grid_test.jl Wed Aug 28 10:35:08 2024 +0200 @@ -2,6 +2,30 @@ using Sbplib.RegionIndices using Test using StaticArrays +using LinearAlgebra + + +_skew_mapping(a,b) = (ξ̄->ξ̄[1]*a + ξ̄[2]*b, ξ̄->[a b]) + +function _partially_curved_mapping() + x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] + J((ξ, η)) = @SMatrix[ + 1 0; + η*(2ξ-1) 1+ξ*(ξ-1); + ] + + return x̄, J +end + +function _fully_curved_mapping() + x̄((ξ, η)) = @SVector[2ξ + η*(1-η), 3η+(1+η/2)*ξ^2] + J((ξ, η)) = @SMatrix[ + 2 1-2η; + (2+η)*ξ 3+1/2*ξ^2; + ] + + return x̄, J +end @testset "MappedGrid" begin lg = equidistant_grid((0,0), (1,1), 11, 11) # TODO: Change dims of the grid to be different @@ -117,12 +141,7 @@ end @testset "boundary_grid" begin - x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] - J((ξ, η)) = @SMatrix[ - 1 0; - η*(2ξ-1) 1+ξ*(ξ-1); - ] - + x̄, J = _partially_curved_mapping() mg = mapped_grid(x̄, J, 10, 11) J1((ξ, η)) = @SMatrix[ 1 ; @@ -156,42 +175,104 @@ @testset test_boundary_grid(mg, TensorGridBoundary{2, Lower}(), J1) @testset test_boundary_grid(mg, TensorGridBoundary{2, Upper}(), J1) end - - @testset "jacobian_determinant" begin - @test_broken false - end - - @testset "geometric_tensor" begin - @test_broken false - end - - @testset "geometric_tensor_inverse" begin - @test_broken false - end - end @testset "mapped_grid" begin - x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] - J((ξ, η)) = @SMatrix[ - 1 0; - η*(2ξ-1) 1+ξ*(ξ-1); - ] + x̄, J = _partially_curved_mapping() mg = mapped_grid(x̄, J, 10, 11) @test mg isa MappedGrid{SVector{2,Float64}, 2} lg = equidistant_grid((0,0), (1,1), 10, 11) @test logicalgrid(mg) == lg @test collect(mg) == map(x̄, lg) +end + +@testset "jacobian_determinant" begin + @test_broken false +end + +@testset "metric_tensor" begin + @test_broken false +end + +@testset "metric_tensor_inverse" begin + @test_broken false +end + +@testset "min_spacing" begin + let g = mapped_grid(identity, x->@SMatrix[1], 11) + @test min_spacing(g) ≈ 0.1 + end + + let g = mapped_grid(x->x+x.^2/2, x->@SMatrix[1 .+ x], 11) + @test min_spacing(g) ≈ 0.105 + end + + let g = mapped_grid(x->x + x.*(1 .- x)/2, x->@SMatrix[1.5 .- x], 11) + @test min_spacing(g) ≈ 0.055 + end + + let g = mapped_grid(identity, x->@SMatrix[1 0; 0 1], 11,11) + @test min_spacing(g) ≈ 0.1 + end + + let g = mapped_grid(identity, x->@SMatrix[1 0; 0 1], 11,21) + @test min_spacing(g) ≈ 0.05 + end - @testset "normal" begin - @test normal(mg, CartesianBoundary{1,Lower}()) == fill(@SVector[-1,0], 11) - @test normal(mg, CartesianBoundary{1,Upper}()) == fill(@SVector[1,0], 11) - @test normal(mg, CartesianBoundary{2,Lower}()) == fill(@SVector[0,-1], 10) - @test normal(mg, CartesianBoundary{2,Upper}()) ≈ map(boundary_grid(mg,CartesianBoundary{2,Upper}())|>logicalgrid) do ξ̄ - α = 1-2ξ̄[1] - @SVector[α,1]/√(α^2 + 1) + @testset let a = @SVector[1,0], b = @SVector[1,1]/√2 + g = mapped_grid(_skew_mapping(a,b)...,11,11) + + @test min_spacing(g) ≈ 0.1*norm(b-a) + end + + @testset let a = @SVector[1,0], b = @SVector[-1,1]/√2 + g = mapped_grid(_skew_mapping(a,b)...,11,11) + + @test min_spacing(g) ≈ 0.1*norm(a+b) + end +end + +@testset "normal" begin + g = mapped_grid(_partially_curved_mapping()...,10, 11) + + @test normal(g, CartesianBoundary{1,Lower}()) == fill(@SVector[-1,0], 11) + @test normal(g, CartesianBoundary{1,Upper}()) == fill(@SVector[1,0], 11) + @test normal(g, CartesianBoundary{2,Lower}()) == fill(@SVector[0,-1], 10) + @test normal(g, CartesianBoundary{2,Upper}()) ≈ map(boundary_grid(g,CartesianBoundary{2,Upper}())|>logicalgrid) do ξ̄ + α = 1-2ξ̄[1] + @SVector[α,1]/√(α^2 + 1) + end + + g = mapped_grid(_fully_curved_mapping()...,5,4) + + unit(v) = v/norm(v) + @testset let bId = CartesianBoundary{1,Lower}() + lbg = boundary_grid(logicalgrid(g), bId) + @test normal(g, bId) ≈ map(lbg) do (ξ, η) + -unit(@SVector[1/2, η/3-1/6]) + end + end + + @testset let bId = CartesianBoundary{1,Upper}() + lbg = boundary_grid(logicalgrid(g), bId) + @test normal(g, bId) ≈ map(lbg) do (ξ, η) + unit(@SVector[7/2, 2η-1]/(5 + 3η + 2η^2)) + end + end + + @testset let bId = CartesianBoundary{2,Lower}() + lbg = boundary_grid(logicalgrid(g), bId) + @test normal(g, bId) ≈ map(lbg) do (ξ, η) + -unit(@SVector[-2ξ, 2]/(6 + ξ^2 - 2ξ)) + end + end + + @testset let bId = CartesianBoundary{2,Upper}() + lbg = boundary_grid(logicalgrid(g), bId) + @test normal(g, bId) ≈ map(lbg) do (ξ, η) + unit(@SVector[-3ξ, 2]/(6 + ξ^2 + 3ξ)) end end end