Mercurial > repos > public > sbplib_julia
diff src/LazyTensors/lazy_tensor_operations.jl @ 1037:9e76bf19904c refactor/lazy_tensors
Drop more prefixes
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 22 Mar 2022 14:10:53 +0100 |
parents | 6abbb2c6c3e4 |
children | f857057e61e6 3bb94ce74697 2e606d4c0ab1 |
line wrap: on
line diff
--- a/src/LazyTensors/lazy_tensor_operations.jl Mon Mar 21 15:22:22 2022 +0100 +++ b/src/LazyTensors/lazy_tensor_operations.jl Tue Mar 22 14:10:53 2022 +0100 @@ -28,7 +28,7 @@ """ - LazyTensorTranspose{T,R,D} <: LazyTensor{T,D,R} + TensorTranspose{T,R,D} <: LazyTensor{T,D,R} Struct for lazy transpose of a LazyTensor. @@ -36,40 +36,40 @@ the transpose of mapping `m` by using `m'`. `m'` will work as a regular LazyTensor lazily calling the appropriate methods of `m`. """ -struct LazyTensorTranspose{T,R,D, TM<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R} +struct TensorTranspose{T,R,D, TM<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R} tm::TM end # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? # Jonatan 2020-09-25: Is the problem that you can take the transpose of any LazyTensor even if it doesn't implement `apply_transpose`? -Base.adjoint(tm::LazyTensor) = LazyTensorTranspose(tm) -Base.adjoint(tmt::LazyTensorTranspose) = tmt.tm +Base.adjoint(tm::LazyTensor) = TensorTranspose(tm) +Base.adjoint(tmt::TensorTranspose) = tmt.tm -apply(tmt::LazyTensorTranspose{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...) -apply_transpose(tmt::LazyTensorTranspose{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmt.tm, v, I...) +apply(tmt::TensorTranspose{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...) +apply_transpose(tmt::TensorTranspose{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmt.tm, v, I...) -range_size(tmt::LazyTensorTranspose) = domain_size(tmt.tm) -domain_size(tmt::LazyTensorTranspose) = range_size(tmt.tm) +range_size(tmt::TensorTranspose) = domain_size(tmt.tm) +domain_size(tmt::TensorTranspose) = range_size(tmt.tm) -struct LazyTensorBinaryOperation{Op,T,R,D,T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R} +struct ElementwiseTensorOperation{Op,T,R,D,T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R} tm1::T1 tm2::T2 - function LazyTensorBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} + function ElementwiseTensorOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} @boundscheck check_domain_size(tm2, domain_size(tm1)) @boundscheck check_range_size(tm2, range_size(tm1)) return new{Op,T,R,D,T1,T2}(tm1,tm2) end end -LazyTensorBinaryOperation{Op}(s,t) where Op = LazyTensorBinaryOperation{Op,eltype(s), range_dim(s), domain_dim(s)}(s,t) +ElementwiseTensorOperation{Op}(s,t) where Op = ElementwiseTensorOperation{Op,eltype(s), range_dim(s), domain_dim(s)}(s,t) -apply(tmBinOp::LazyTensorBinaryOperation{:+,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...) -apply(tmBinOp::LazyTensorBinaryOperation{:-,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...) +apply(tmBinOp::ElementwiseTensorOperation{:+,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...) +apply(tmBinOp::ElementwiseTensorOperation{:-,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...) -range_size(tmBinOp::LazyTensorBinaryOperation) = range_size(tmBinOp.tm1) -domain_size(tmBinOp::LazyTensorBinaryOperation) = domain_size(tmBinOp.tm1) +range_size(tmBinOp::ElementwiseTensorOperation) = range_size(tmBinOp.tm1) +domain_size(tmBinOp::ElementwiseTensorOperation) = domain_size(tmBinOp.tm1) """