Mercurial > repos > public > sbplib_julia
diff EquidistantGrid.jl @ 134:79699dda29be
Merge in cell_based_test
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 21 Feb 2019 16:27:28 +0100 |
parents | 155bbecf18bb |
children | 99308f68e548 |
line wrap: on
line diff
--- a/EquidistantGrid.jl Fri Jan 25 15:20:40 2019 +0100 +++ b/EquidistantGrid.jl Thu Feb 21 16:27:28 2019 +0100 @@ -5,93 +5,52 @@ # the domain is defined as (-1,1)x(0,2). struct EquidistantGrid{Dim,T<:Real} <: AbstractGrid - numberOfPointsPerDim::NTuple{Dim, Int} # First coordinate direction stored first, then - + size::NTuple{Dim, Int} # First coordinate direction stored first limit_lower::NTuple{Dim, T} limit_upper::NTuple{Dim, T} + inverse_spacing::NTuple{Dim, T} # The reciprocal of the grid spacing # General constructor - function EquidistantGrid(nPointsPerDim::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T - @assert all(nPointsPerDim.>0) + function EquidistantGrid(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where Dim where T + @assert all(size.>0) @assert all(limit_upper.-limit_lower .!= 0) - return new{Dim,T}(nPointsPerDim, limit_lower, limit_upper) + inverse_spacing = (size.-1)./abs.(limit_upper.-limit_lower) + return new{Dim,T}(size, limit_lower, limit_upper, inverse_spacing) end +end - # # 1D constructor which can be called as EquidistantGrid(m, (xl,xr)) - # function EquidistantGrid(nPointsPerDim::Integer, lims::NTuple{2,Real}) - # return EquidistantGrid((nPointsPerDim,), ((lims[1],),(lims[2],))) - # end - +function Base.eachindex(grid::EquidistantGrid) + CartesianIndices(grid.size) end # Returns the number of dimensions of an EquidistantGrid. # # @Input: grid - an EquidistantGrid -# @Return: numberOfPoints - The number of dimensions -function numberOfDimensions(grid::EquidistantGrid) - return length(grid.numberOfPointsPerDim) -end - -# Computes the total number of points of an EquidistantGrid. -# -# @Input: grid - an EquidistantGrid -# @Return: numberOfPoints - The total number of points -function numberOfPoints(grid::EquidistantGrid) - return prod(grid.numberOfPointsPerDim) +# @Return: dimension - The dimension of the grid +function dimension(grid::EquidistantGrid) + return length(grid.size) end -# Computes the grid spacing of an EquidistantGrid, i.e the unsigned distance -# between two points for each coordinate direction. +# Returns the spacing of the grid # -# @Input: grid - an EquidistantGrid -# @Return: h̄ - Grid spacing for each coordinate direction stored in a tuple. -function spacings(grid::EquidistantGrid) - return abs.(grid.limit_upper.-grid.limit_lower)./(grid.numberOfPointsPerDim.-1) +function spacing(grid::EquidistantGrid) + return 1.0./grid.inverse_spacing end -# Computes the points of an EquidistantGrid as a vector of tuples. The vector is ordered -# such that points in the first coordinate direction varies first, then the second -# and lastely the third (if applicable) +# Computes the points of an EquidistantGrid as an array of tuples with +# the same dimension as the grid. # # @Input: grid - an EquidistantGrid # @Return: points - the points of the grid. function points(grid::EquidistantGrid) - dx̄ = (grid.limit_upper.-grid.limit_lower)./(grid.numberOfPointsPerDim.-1) - - points = Vector{typeof(dx̄)}(undef, numberOfPoints(grid)) - # Compute the points based on their Cartesian indices and the signed - # grid spacings - cartesianIndices = CartesianIndices(grid.numberOfPointsPerDim) - for i ∈ 1:numberOfPoints(grid) - ci = Tuple(cartesianIndices[i]) .-1 - points[i] = grid.limit_lower .+ dx̄.*ci - end - - # TBD: Keep? this? How do we want to represent points in 1D? - if numberOfDimensions(grid) == 1 - points = broadcast(x -> x[1], points) - end - return points + # TODO: Make this return an abstract array? + indices = Tuple.(CartesianIndices(grid.size)) + h = spacing(grid) + return broadcast(I -> grid.limit_lower .+ (I.-1).*h, indices) end function pointsalongdim(grid::EquidistantGrid, dim::Integer) - @assert dim<=numberOfDimensions(grid) + @assert dim<=dimension(grid) @assert dim>0 - points = range(grid.limit_lower[dim],stop=grid.limit_lower[dim],length=grid.numberOfPointsPerDim[dim]) + points = range(grid.limit_lower[dim],stop=grid.limit_lower[dim],length=grid.size[dim]) end - -using PyPlot, PyCall - -function plotgridfunction(grid::EquidistantGrid, gridfunction) - if numberOfDimensions(grid) == 1 - plot(pointsalongdim(grid,1), gridfunction, linewidth=2.0) - elseif numberOfDimensions(grid) == 2 - mx = grid.numberOfPointsPerDim[1] - my = grid.numberOfPointsPerDim[2] - X = repeat(pointsalongdim(grid,1),1,my) - Y = permutedims(repeat(pointsalongdim(grid,2),1,mx)) - plot_surface(X,Y,reshape(gridfunction,mx,my)); - else - error(string("Plot not implemented for dimension ", string(numberOfDimensions(grid)))) - end -end