diff src/LazyTensors/lazy_tensor_operations.jl @ 942:7829c09f8137 feature/tensormapping_application_promotion

Add promotion calculation of element type for LazyTensorMappingApplication
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 10 Mar 2022 11:13:34 +0100
parents 76e5682d0e52
children fb060e98ac0a
line wrap: on
line diff
--- a/src/LazyTensors/lazy_tensor_operations.jl	Mon Feb 21 10:38:19 2022 +0100
+++ b/src/LazyTensors/lazy_tensor_operations.jl	Thu Mar 10 11:13:34 2022 +0100
@@ -7,9 +7,14 @@
 With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`.
 The actual result will be calcualted when indexing into `m*v`.
 """
-struct LazyTensorMappingApplication{T,R,D, TM<:TensorMapping{T,R,D}, AA<:AbstractArray{T,D}} <: LazyArray{T,R}
+struct LazyTensorMappingApplication{T,R,D, TM<:TensorMapping{<:Any,R,D}, AA<:AbstractArray{<:Any,D}} <: LazyArray{T,R}
     t::TM
     o::AA
+
+    function LazyTensorMappingApplication(t::TensorMapping{<:Any,R,D}, o::AbstractArray{<:Any,D}) where {R,D}
+        T = promote_type(eltype(t), eltype(o))
+        return new{T,R,D,typeof(t), typeof(o)}(t,o)
+    end
 end
 # TODO: Do boundschecking on creation!
 export LazyTensorMappingApplication