Mercurial > repos > public > sbplib_julia
diff test/testSbpOperators.jl @ 694:6ab473e0ea80 refactor/operator_naming
Merging in default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 13 Feb 2021 16:07:46 +0100 |
parents | 1accc3e051d0 04149e80e25c |
children | 1b3b8f82349e |
line wrap: on
line diff
--- a/test/testSbpOperators.jl Fri Feb 12 16:16:45 2021 +0100 +++ b/test/testSbpOperators.jl Sat Feb 13 16:07:46 2021 +0100 @@ -393,24 +393,31 @@ end end -@testset "DiagonalQuadrature" begin +@testset "Quadrature diagonal" begin Lx = π/2. Ly = Float64(π) + Lz = 1. g_1D = EquidistantGrid(77, 0.0, Lx) g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + g_3D = EquidistantGrid((10,10, 10), (0.0, 0.0, 0.0), (Lx,Ly,Lz)) integral(H,v) = sum(H*v) - @testset "Constructors" begin + @testset "quadrature" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "0D" begin + H = quadrature(EquidistantGrid{Float64}(),op.quadratureClosure) + @test H == IdentityMapping{Float64}() + @test H isa TensorMapping{T,0,0} where T + end @testset "1D" begin - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) inner_stencil = CenteredStencil(1.) - @test H == Quadrature(g_1D,inner_stencil,op.quadratureClosure) + @test H == quadrature(g_1D,op.quadratureClosure,inner_stencil) @test H isa TensorMapping{T,1,1} where T end - @testset "1D" begin - H = DiagonalQuadrature(g_2D,op.quadratureClosure) - H_x = DiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure) - H_y = DiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure) + @testset "2D" begin + H = quadrature(g_2D,op.quadratureClosure) + H_x = quadrature(restrict(g_2D,1),op.quadratureClosure) + H_y = quadrature(restrict(g_2D,2),op.quadratureClosure) @test H == H_x⊗H_y @test H isa TensorMapping{T,2,2} where T end @@ -419,12 +426,12 @@ @testset "Sizes" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) @testset "1D" begin - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) @test domain_size(H) == size(g_1D) @test range_size(H) == size(g_1D) end @testset "2D" begin - H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H = quadrature(g_2D,op.quadratureClosure) @test domain_size(H) == size(g_2D) @test range_size(H) == size(g_2D) end @@ -441,7 +448,7 @@ @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) for i = 1:2 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end @@ -450,7 +457,7 @@ @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) for i = 1:4 @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 end @@ -464,13 +471,13 @@ u = evalOn(g_2D,(x,y)->sin(x)+cos(y)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H = quadrature(g_2D,op.quadratureClosure) @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H,u) ≈ π rtol = 1e-4 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H = quadrature(g_2D,op.quadratureClosure) @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 @test integral(H,u) ≈ π rtol = 1e-8 end @@ -524,14 +531,14 @@ u = evalOn(g_1D,x->x^3-x^2+1) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = DiagonalQuadrature(g_1D,op.quadratureClosure) + H = quadrature(g_1D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 @@ -542,14 +549,14 @@ u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) @testset "2nd order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H = quadrature(g_2D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15 end @testset "4th order" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H = quadrature(g_2D,op.quadratureClosure) Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) @test Hi*H*v ≈ v rtol = 1e-15 @test Hi*H*u ≈ u rtol = 1e-15