diff test/testSbpOperators.jl @ 694:6ab473e0ea80 refactor/operator_naming

Merging in default
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Sat, 13 Feb 2021 16:07:46 +0100
parents 1accc3e051d0 04149e80e25c
children 1b3b8f82349e
line wrap: on
line diff
--- a/test/testSbpOperators.jl	Fri Feb 12 16:16:45 2021 +0100
+++ b/test/testSbpOperators.jl	Sat Feb 13 16:07:46 2021 +0100
@@ -393,24 +393,31 @@
     end
 end
 
-@testset "DiagonalQuadrature" begin
+@testset "Quadrature diagonal" begin
     Lx = π/2.
     Ly = Float64(π)
+    Lz = 1.
     g_1D = EquidistantGrid(77, 0.0, Lx)
     g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
+    g_3D = EquidistantGrid((10,10, 10), (0.0, 0.0, 0.0), (Lx,Ly,Lz))
     integral(H,v) = sum(H*v)
-    @testset "Constructors" begin
+    @testset "quadrature" begin
         op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+        @testset "0D" begin
+            H = quadrature(EquidistantGrid{Float64}(),op.quadratureClosure)
+            @test H == IdentityMapping{Float64}()
+            @test H isa TensorMapping{T,0,0} where T
+        end
         @testset "1D" begin
-            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            H = quadrature(g_1D,op.quadratureClosure)
             inner_stencil = CenteredStencil(1.)
-            @test H == Quadrature(g_1D,inner_stencil,op.quadratureClosure)
+            @test H == quadrature(g_1D,op.quadratureClosure,inner_stencil)
             @test H isa TensorMapping{T,1,1} where T
         end
-        @testset "1D" begin
-            H = DiagonalQuadrature(g_2D,op.quadratureClosure)
-            H_x = DiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure)
-            H_y = DiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure)
+        @testset "2D" begin
+            H = quadrature(g_2D,op.quadratureClosure)
+            H_x = quadrature(restrict(g_2D,1),op.quadratureClosure)
+            H_y = quadrature(restrict(g_2D,2),op.quadratureClosure)
             @test H == H_x⊗H_y
             @test H isa TensorMapping{T,2,2} where T
         end
@@ -419,12 +426,12 @@
     @testset "Sizes" begin
         op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
         @testset "1D" begin
-            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            H = quadrature(g_1D,op.quadratureClosure)
             @test domain_size(H) == size(g_1D)
             @test range_size(H) == size(g_1D)
         end
         @testset "2D" begin
-            H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+            H = quadrature(g_2D,op.quadratureClosure)
             @test domain_size(H) == size(g_2D)
             @test range_size(H) == size(g_2D)
         end
@@ -441,7 +448,7 @@
 
             @testset "2nd order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-                H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+                H = quadrature(g_1D,op.quadratureClosure)
                 for i = 1:2
                     @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14
                 end
@@ -450,7 +457,7 @@
 
             @testset "4th order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-                H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+                H = quadrature(g_1D,op.quadratureClosure)
                 for i = 1:4
                     @test integral(H,v[i]) ≈ v[i+1][end] -  v[i+1][1] rtol = 1e-14
                 end
@@ -464,13 +471,13 @@
             u = evalOn(g_2D,(x,y)->sin(x)+cos(y))
             @testset "2nd order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-                H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+                H = quadrature(g_2D,op.quadratureClosure)
                 @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13
                 @test integral(H,u) ≈ π rtol = 1e-4
             end
             @testset "4th order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-                H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+                H = quadrature(g_2D,op.quadratureClosure)
                 @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13
                 @test integral(H,u) ≈ π rtol = 1e-8
             end
@@ -524,14 +531,14 @@
             u = evalOn(g_1D,x->x^3-x^2+1)
             @testset "2nd order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-                H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+                H = quadrature(g_1D,op.quadratureClosure)
                 Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure)
                 @test Hi*H*v ≈ v rtol = 1e-15
                 @test Hi*H*u ≈ u rtol = 1e-15
             end
             @testset "4th order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-                H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+                H = quadrature(g_1D,op.quadratureClosure)
                 Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure)
                 @test Hi*H*v ≈ v rtol = 1e-15
                 @test Hi*H*u ≈ u rtol = 1e-15
@@ -542,14 +549,14 @@
             u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y))
             @testset "2nd order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-                H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+                H = quadrature(g_2D,op.quadratureClosure)
                 Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure)
                 @test Hi*H*v ≈ v rtol = 1e-15
                 @test Hi*H*u ≈ u rtol = 1e-15
             end
             @testset "4th order" begin
                 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-                H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+                H = quadrature(g_2D,op.quadratureClosure)
                 Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure)
                 @test Hi*H*v ≈ v rtol = 1e-15
                 @test Hi*H*u ≈ u rtol = 1e-15