Mercurial > repos > public > sbplib_julia
diff test/testSbpOperators.jl @ 651:67639b1c99ea
Merged feature/volume_and_boundary_operators
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 20 Jan 2021 17:52:55 +0100 |
parents | 351937390162 |
children | 538ccbaeb1f8 e14627e79a54 5ff162f3ed72 |
line wrap: on
line diff
--- a/test/testSbpOperators.jl Sun Dec 06 10:53:15 2020 +0100 +++ b/test/testSbpOperators.jl Wed Jan 20 17:52:55 2021 +0100 @@ -7,6 +7,13 @@ using TOML import Sbplib.SbpOperators.Stencil +import Sbplib.SbpOperators.VolumeOperator +import Sbplib.SbpOperators.volume_operator +import Sbplib.SbpOperators.BoundaryOperator +import Sbplib.SbpOperators.boundary_operator +import Sbplib.SbpOperators.even +import Sbplib.SbpOperators.odd + @testset "SbpOperators" begin @@ -108,240 +115,636 @@ end end -# @testset "apply_quadrature" begin -# op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) -# h = 0.5 -# -# @test apply_quadrature(op, h, 1.0, 10, 100) == h -# -# N = 10 -# qc = op.quadratureClosure -# q = h.*(qc..., ones(N-2*closuresize(op))..., reverse(qc)...) -# @assert length(q) == N -# -# for i ∈ 1:N -# @test apply_quadrature(op, h, 1.0, i, N) == q[i] -# end -# -# v = [2.,3.,2.,4.,5.,4.,3.,4.,5.,4.5] -# for i ∈ 1:N -# @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] -# end -# end +@testset "VolumeOperator" begin + inner_stencil = Stencil(1/4 .* (1.,2.,1.),center=2) + closure_stencils = (Stencil(1/2 .* (1.,1.),center=1),Stencil((0.,1.),center=2)) + g_1D = EquidistantGrid(11,0.,1.) + g_2D = EquidistantGrid((11,12),(0.,0.),(1.,1.)) + g_3D = EquidistantGrid((11,12,10),(0.,0.,0.),(1.,1.,1.)) + @testset "Constructors" begin + @testset "1D" begin + op = VolumeOperator(inner_stencil,closure_stencils,(11,),even) + @test op == VolumeOperator(g_1D,inner_stencil,closure_stencils,even) + @test op == volume_operator(g_1D,inner_stencil,closure_stencils,even,1) + @test op isa TensorMapping{T,1,1} where T + end + @testset "2D" begin + op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) + op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2) + Ix = IdentityMapping{Float64}((11,)) + Iy = IdentityMapping{Float64}((12,)) + @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy + @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even) + @test op_x isa TensorMapping{T,2,2} where T + @test op_y isa TensorMapping{T,2,2} where T + end + @testset "3D" begin + op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1) + op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2) + op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3) + Ix = IdentityMapping{Float64}((11,)) + Iy = IdentityMapping{Float64}((12,)) + Iz = IdentityMapping{Float64}((10,)) + @test op_x == VolumeOperator(inner_stencil,closure_stencils,(11,),even)⊗Iy⊗Iz + @test op_y == Ix⊗VolumeOperator(inner_stencil,closure_stencils,(12,),even)⊗Iz + @test op_z == Ix⊗Iy⊗VolumeOperator(inner_stencil,closure_stencils,(10,),even) + @test op_x isa TensorMapping{T,3,3} where T + @test op_y isa TensorMapping{T,3,3} where T + @test op_z isa TensorMapping{T,3,3} where T + end + end + + @testset "Sizes" begin + @testset "1D" begin + op = volume_operator(g_1D,inner_stencil,closure_stencils,even,1) + @test range_size(op) == domain_size(op) == size(g_1D) + end + + @testset "2D" begin + op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) + op_y = volume_operator(g_2D,inner_stencil,closure_stencils,even,2) + @test range_size(op_y) == domain_size(op_y) == + range_size(op_x) == domain_size(op_x) == size(g_2D) + end + @testset "3D" begin + op_x = volume_operator(g_3D,inner_stencil,closure_stencils,even,1) + op_y = volume_operator(g_3D,inner_stencil,closure_stencils,even,2) + op_z = volume_operator(g_3D,inner_stencil,closure_stencils,even,3) + @test range_size(op_z) == domain_size(op_z) == + range_size(op_y) == domain_size(op_y) == + range_size(op_x) == domain_size(op_x) == size(g_3D) + end + end + + op_x = volume_operator(g_2D,inner_stencil,closure_stencils,even,1) + op_y = volume_operator(g_2D,inner_stencil,closure_stencils,odd,2) + v = zeros(size(g_2D)) + Nx = size(g_2D)[1] + Ny = size(g_2D)[2] + for i = 1:Nx + v[i,:] .= i + end + rx = copy(v) + rx[1,:] .= 1.5 + rx[Nx,:] .= (2*Nx-1)/2 + ry = copy(v) + ry[:,Ny-1:Ny] = -v[:,Ny-1:Ny] + + @testset "Application" begin + @test op_x*v ≈ rx rtol = 1e-14 + @test op_y*v ≈ ry rtol = 1e-14 + end + + @testset "Regions" begin + @test (op_x*v)[Index(1,Lower),Index(3,Interior)] ≈ rx[1,3] rtol = 1e-14 + @test (op_x*v)[Index(2,Lower),Index(3,Interior)] ≈ rx[2,3] rtol = 1e-14 + @test (op_x*v)[Index(6,Interior),Index(3,Interior)] ≈ rx[6,3] rtol = 1e-14 + @test (op_x*v)[Index(10,Upper),Index(3,Interior)] ≈ rx[10,3] rtol = 1e-14 + @test (op_x*v)[Index(11,Upper),Index(3,Interior)] ≈ rx[11,3] rtol = 1e-14 + + @test_throws BoundsError (op_x*v)[Index(3,Lower),Index(3,Interior)] + @test_throws BoundsError (op_x*v)[Index(9,Upper),Index(3,Interior)] + + @test (op_y*v)[Index(3,Interior),Index(1,Lower)] ≈ ry[3,1] rtol = 1e-14 + @test (op_y*v)[Index(3,Interior),Index(2,Lower)] ≈ ry[3,2] rtol = 1e-14 + @test (op_y*v)[Index(3,Interior),Index(6,Interior)] ≈ ry[3,6] rtol = 1e-14 + @test (op_y*v)[Index(3,Interior),Index(11,Upper)] ≈ ry[3,11] rtol = 1e-14 + @test (op_y*v)[Index(3,Interior),Index(12,Upper)] ≈ ry[3,12] rtol = 1e-14 + + @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(10,Upper)] + @test_throws BoundsError (op_y*v)[Index(3,Interior),Index(3,Lower)] + end + + @testset "Inferred" begin + @inferred apply(op_x, v,1,1) + @inferred apply(op_x, v, Index(1,Lower),Index(1,Lower)) + @inferred apply(op_x, v, Index(6,Interior),Index(1,Lower)) + @inferred apply(op_x, v, Index(11,Upper),Index(1,Lower)) + + @inferred apply(op_y, v,1,1) + @inferred apply(op_y, v, Index(1,Lower),Index(1,Lower)) + @inferred apply(op_y, v, Index(1,Lower),Index(6,Interior)) + @inferred apply(op_y, v, Index(1,Lower),Index(11,Upper)) + end + +end @testset "SecondDerivative" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - L = 3.5 - g = EquidistantGrid(101, 0.0, L) - Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils) + Lx = 3.5 + Ly = 3. + g_1D = EquidistantGrid(121, 0.0, Lx) + g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) + + @testset "Constructors" begin + @testset "1D" begin + Dₓₓ = SecondDerivative(g_1D,op.innerStencil,op.closureStencils) + @test Dₓₓ == SecondDerivative(g_1D,op.innerStencil,op.closureStencils,1) + @test Dₓₓ isa VolumeOperator + end + @testset "2D" begin + Dₓₓ = SecondDerivative(g_2D,op.innerStencil,op.closureStencils,1) + D2 = SecondDerivative(g_1D,op.innerStencil,op.closureStencils) + I = IdentityMapping{Float64}(size(g_2D)[2]) + @test Dₓₓ == D2⊗I + @test Dₓₓ isa TensorMapping{T,2,2} where T + end + end + + # Exact differentiation is measured point-wise. In other cases + # the error is measured in the l2-norm. + @testset "Accuracy" begin + @testset "1D" begin + l2(v) = sqrt(spacing(g_1D)[1]*sum(v.^2)); + monomials = () + maxOrder = 4; + for i = 0:maxOrder-1 + f_i(x) = 1/factorial(i)*x^i + monomials = (monomials...,evalOn(g_1D,f_i)) + end + v = evalOn(g_1D,x -> sin(x)) + vₓₓ = evalOn(g_1D,x -> -sin(x)) - f0(x) = 1. - f1(x) = x - f2(x) = 1/2*x^2 - f3(x) = 1/6*x^3 - f4(x) = 1/24*x^4 - f5(x) = sin(x) - f5ₓₓ(x) = -f5(x) + # 2nd order interior stencil, 1nd order boundary stencil, + # implies that L*v should be exact for monomials up to order 2. + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + Dₓₓ = SecondDerivative(g_1D,op.innerStencil,op.closureStencils) + @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 + @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 + @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 + @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 + end + + # 4th order interior stencil, 2nd order boundary stencil, + # implies that L*v should be exact for monomials up to order 3. + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + Dₓₓ = SecondDerivative(g_1D,op.innerStencil,op.closureStencils) + # NOTE: high tolerances for checking the "exact" differentiation + # due to accumulation of round-off errors/cancellation errors? + @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 + @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 + @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 + @test Dₓₓ*monomials[4] ≈ monomials[2] atol = 5e-10 + @test Dₓₓ*v ≈ vₓₓ rtol = 5e-4 norm = l2 + end + end + + @testset "2D" begin + l2(v) = sqrt(prod(spacing(g_2D))*sum(v.^2)); + binomials = () + maxOrder = 4; + for i = 0:maxOrder-1 + f_i(x,y) = 1/factorial(i)*y^i + x^i + binomials = (binomials...,evalOn(g_2D,f_i)) + end + v = evalOn(g_2D, (x,y) -> sin(x)+cos(y)) + v_yy = evalOn(g_2D,(x,y) -> -cos(y)) - v0 = evalOn(g,f0) - v1 = evalOn(g,f1) - v2 = evalOn(g,f2) - v3 = evalOn(g,f3) - v4 = evalOn(g,f4) - v5 = evalOn(g,f5) + # 2nd order interior stencil, 1st order boundary stencil, + # implies that L*v should be exact for binomials up to order 2. + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + Dyy = SecondDerivative(g_2D,op.innerStencil,op.closureStencils,2) + @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 + @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 + @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 + @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 + end - @test Dₓₓ isa TensorMapping{T,1,1} where T - @test Dₓₓ' isa TensorMapping{T,1,1} where T + # 4th order interior stencil, 2nd order boundary stencil, + # implies that L*v should be exact for binomials up to order 3. + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + Dyy = SecondDerivative(g_2D,op.innerStencil,op.closureStencils,2) + # NOTE: high tolerances for checking the "exact" differentiation + # due to accumulation of round-off errors/cancellation errors? + @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 + @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 + @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 + @test Dyy*binomials[4] ≈ evalOn(g_2D,(x,y)->y) atol = 5e-9 + @test Dyy*v ≈ v_yy rtol = 5e-4 norm = l2 + end + end + end +end - # 4th order interior stencil, 2nd order boundary stencil, - # implies that L*v should be exact for v - monomial up to order 3. - # Exact differentiation is measured point-wise. For other grid functions +@testset "Laplace" begin + g_1D = EquidistantGrid(101, 0.0, 1.) + g_3D = EquidistantGrid((51,101,52), (0.0, -1.0, 0.0), (1., 1., 1.)) + @testset "Constructors" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + L = Laplace(g_1D, op.innerStencil, op.closureStencils) + @test L == SecondDerivative(g_1D, op.innerStencil, op.closureStencils) + @test L isa TensorMapping{T,1,1} where T + end + @testset "3D" begin + L = Laplace(g_3D, op.innerStencil, op.closureStencils) + @test L isa TensorMapping{T,3,3} where T + Dxx = SecondDerivative(g_3D, op.innerStencil, op.closureStencils,1) + Dyy = SecondDerivative(g_3D, op.innerStencil, op.closureStencils,2) + Dzz = SecondDerivative(g_3D, op.innerStencil, op.closureStencils,3) + @test L == Dxx + Dyy + Dzz + end + end + + # Exact differentiation is measured point-wise. In other cases # the error is measured in the l2-norm. - @test norm(Dₓₓ*v0) ≈ 0.0 atol=5e-10 - @test norm(Dₓₓ*v1) ≈ 0.0 atol=5e-10 - @test Dₓₓ*v2 ≈ v0 atol=5e-11 - @test Dₓₓ*v3 ≈ v1 atol=5e-11 + @testset "Accuracy" begin + l2(v) = sqrt(prod(spacing(g_3D))*sum(v.^2)); + polynomials = () + maxOrder = 4; + for i = 0:maxOrder-1 + f_i(x,y,z) = 1/factorial(i)*(y^i + x^i + z^i) + polynomials = (polynomials...,evalOn(g_3D,f_i)) + end + v = evalOn(g_3D, (x,y,z) -> sin(x) + cos(y) + exp(z)) + Δv = evalOn(g_3D,(x,y,z) -> -sin(x) - cos(y) + exp(z)) - h = spacing(g)[1]; - l2(v) = sqrt(h*sum(v.^2)) - @test Dₓₓ*v4 ≈ v2 atol=5e-4 norm=l2 - @test Dₓₓ*v5 ≈ -v5 atol=5e-4 norm=l2 + # 2nd order interior stencil, 1st order boundary stencil, + # implies that L*v should be exact for binomials up to order 2. + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + L = Laplace(g_3D,op.innerStencil,op.closureStencils) + @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 + @test L*v ≈ Δv rtol = 5e-2 norm = l2 + end + + # 4th order interior stencil, 2nd order boundary stencil, + # implies that L*v should be exact for binomials up to order 3. + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + L = Laplace(g_3D,op.innerStencil,op.closureStencils) + # NOTE: high tolerances for checking the "exact" differentiation + # due to accumulation of round-off errors/cancellation errors? + @test L*polynomials[1] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test L*polynomials[2] ≈ zeros(Float64, size(g_3D)...) atol = 5e-9 + @test L*polynomials[3] ≈ polynomials[1] atol = 5e-9 + @test L*polynomials[4] ≈ polynomials[2] atol = 5e-9 + @test L*v ≈ Δv rtol = 5e-4 norm = l2 + end + end end +@testset "DiagonalQuadrature" begin + Lx = π/2. + Ly = Float64(π) + g_1D = EquidistantGrid(77, 0.0, Lx) + g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + integral(H,v) = sum(H*v) + @testset "Constructors" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + H = DiagonalQuadrature(g_1D,op.quadratureClosure) + inner_stencil = Stencil((1.,),center=1) + @test H == Quadrature(g_1D,inner_stencil,op.quadratureClosure) + @test H isa TensorMapping{T,1,1} where T + end + @testset "1D" begin + H = DiagonalQuadrature(g_2D,op.quadratureClosure) + H_x = DiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure) + H_y = DiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure) + @test H == H_x⊗H_y + @test H isa TensorMapping{T,2,2} where T + end + end -@testset "Laplace2D" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - Lx = 1.5 - Ly = 3.2 - g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) - L = Laplace(g, op.innerStencil, op.closureStencils) + @testset "Sizes" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + H = DiagonalQuadrature(g_1D,op.quadratureClosure) + @test domain_size(H) == size(g_1D) + @test range_size(H) == size(g_1D) + end + @testset "2D" begin + H = DiagonalQuadrature(g_2D,op.quadratureClosure) + @test domain_size(H) == size(g_2D) + @test range_size(H) == size(g_2D) + end + end + + @testset "Accuracy" begin + @testset "1D" begin + v = () + for i = 0:4 + f_i(x) = 1/factorial(i)*x^i + v = (v...,evalOn(g_1D,f_i)) + end + u = evalOn(g_1D,x->sin(x)) + + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + H = DiagonalQuadrature(g_1D,op.quadratureClosure) + for i = 1:2 + @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 + end + @test integral(H,u) ≈ 1. rtol = 1e-4 + end + + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + H = DiagonalQuadrature(g_1D,op.quadratureClosure) + for i = 1:4 + @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14 + end + @test integral(H,u) ≈ 1. rtol = 1e-8 + end + end + + @testset "2D" begin + b = 2.1 + v = b*ones(Float64, size(g_2D)) + u = evalOn(g_2D,(x,y)->sin(x)+cos(y)) + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + H = DiagonalQuadrature(g_2D,op.quadratureClosure) + @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 + @test integral(H,u) ≈ π rtol = 1e-4 + end + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + H = DiagonalQuadrature(g_2D,op.quadratureClosure) + @test integral(H,v) ≈ b*Lx*Ly rtol = 1e-13 + @test integral(H,u) ≈ π rtol = 1e-8 + end + end + end +end + +@testset "InverseDiagonalQuadrature" begin + Lx = π/2. + Ly = Float64(π) + g_1D = EquidistantGrid(77, 0.0, Lx) + g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) + @testset "Constructors" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + Hi = InverseDiagonalQuadrature(g_1D, op.quadratureClosure); + inner_stencil = Stencil((1.,),center=1) + closures = () + for i = 1:length(op.quadratureClosure) + closures = (closures...,Stencil(op.quadratureClosure[i].range,1.0./op.quadratureClosure[i].weights)) + end + @test Hi == InverseQuadrature(g_1D,inner_stencil,closures) + @test Hi isa TensorMapping{T,1,1} where T + end + @testset "2D" begin + Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + Hi_x = InverseDiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure) + Hi_y = InverseDiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure) + @test Hi == Hi_x⊗Hi_y + @test Hi isa TensorMapping{T,2,2} where T + end + end + + @testset "Sizes" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) + @test domain_size(Hi) == size(g_1D) + @test range_size(Hi) == size(g_1D) + end + @testset "2D" begin + Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + @test domain_size(Hi) == size(g_2D) + @test range_size(Hi) == size(g_2D) + end + end + + @testset "Accuracy" begin + @testset "1D" begin + v = evalOn(g_1D,x->sin(x)) + u = evalOn(g_1D,x->x^3-x^2+1) + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + H = DiagonalQuadrature(g_1D,op.quadratureClosure) + Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) + @test Hi*H*v ≈ v rtol = 1e-15 + @test Hi*H*u ≈ u rtol = 1e-15 + end + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + H = DiagonalQuadrature(g_1D,op.quadratureClosure) + Hi = InverseDiagonalQuadrature(g_1D,op.quadratureClosure) + @test Hi*H*v ≈ v rtol = 1e-15 + @test Hi*H*u ≈ u rtol = 1e-15 + end + end + @testset "2D" begin + v = evalOn(g_2D,(x,y)->sin(x)+cos(y)) + u = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y)) + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + H = DiagonalQuadrature(g_2D,op.quadratureClosure) + Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + @test Hi*H*v ≈ v rtol = 1e-15 + @test Hi*H*u ≈ u rtol = 1e-15 + end + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + H = DiagonalQuadrature(g_2D,op.quadratureClosure) + Hi = InverseDiagonalQuadrature(g_2D,op.quadratureClosure) + @test Hi*H*v ≈ v rtol = 1e-15 + @test Hi*H*u ≈ u rtol = 1e-15 + end + end + end +end + +@testset "BoundaryOperator" begin + closure_stencil = Stencil((0,2), (2.,1.,3.)) + g_1D = EquidistantGrid(11, 0.0, 1.0) + g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) + + @testset "Constructors" begin + @testset "1D" begin + op_l = BoundaryOperator{Lower}(closure_stencil,size(g_1D)[1]) + @test op_l == BoundaryOperator(g_1D,closure_stencil,Lower()) + @test op_l == boundary_operator(g_1D,closure_stencil,CartesianBoundary{1,Lower}()) + @test op_l isa TensorMapping{T,0,1} where T + + op_r = BoundaryOperator{Upper}(closure_stencil,size(g_1D)[1]) + @test op_r == BoundaryRestriction(g_1D,closure_stencil,Upper()) + @test op_r == boundary_operator(g_1D,closure_stencil,CartesianBoundary{1,Upper}()) + @test op_r isa TensorMapping{T,0,1} where T + end + + @testset "2D" begin + e_w = boundary_operator(g_2D,closure_stencil,CartesianBoundary{1,Upper}()) + @test e_w isa InflatedTensorMapping + @test e_w isa TensorMapping{T,1,2} where T + end + end + + op_l = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Lower}()) + op_r = boundary_operator(g_1D, closure_stencil, CartesianBoundary{1,Upper}()) + + op_w = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Lower}()) + op_e = boundary_operator(g_2D, closure_stencil, CartesianBoundary{1,Upper}()) + op_s = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Lower}()) + op_n = boundary_operator(g_2D, closure_stencil, CartesianBoundary{2,Upper}()) + + @testset "Sizes" begin + @testset "1D" begin + @test domain_size(op_l) == (11,) + @test domain_size(op_r) == (11,) + + @test range_size(op_l) == () + @test range_size(op_r) == () + end + + @testset "2D" begin + @test domain_size(op_w) == (11,15) + @test domain_size(op_e) == (11,15) + @test domain_size(op_s) == (11,15) + @test domain_size(op_n) == (11,15) + + @test range_size(op_w) == (15,) + @test range_size(op_e) == (15,) + @test range_size(op_s) == (11,) + @test range_size(op_n) == (11,) + end + end + + @testset "Application" begin + @testset "1D" begin + v = evalOn(g_1D,x->1+x^2) + u = fill(3.124) + @test (op_l*v)[] == 2*v[1] + v[2] + 3*v[3] + @test (op_r*v)[] == 2*v[end] + v[end-1] + 3*v[end-2] + @test (op_r*v)[1] == 2*v[end] + v[end-1] + 3*v[end-2] + @test op_l'*u == [2*u[]; u[]; 3*u[]; zeros(8)] + @test op_r'*u == [zeros(8); 3*u[]; u[]; 2*u[]] + end + + @testset "2D" begin + v = rand(size(g_2D)...) + u = fill(3.124) + @test op_w*v ≈ 2*v[1,:] + v[2,:] + 3*v[3,:] rtol = 1e-14 + @test op_e*v ≈ 2*v[end,:] + v[end-1,:] + 3*v[end-2,:] rtol = 1e-14 + @test op_s*v ≈ 2*v[:,1] + v[:,2] + 3*v[:,3] rtol = 1e-14 + @test op_n*v ≈ 2*v[:,end] + v[:,end-1] + 3*v[:,end-2] rtol = 1e-14 - f0(x,y) = 2. - f1(x,y) = x+y - f2(x,y) = 1/2*x^2 + 1/2*y^2 - f3(x,y) = 1/6*x^3 + 1/6*y^3 - f4(x,y) = 1/24*x^4 + 1/24*y^4 - f5(x,y) = sin(x) + cos(y) - f5ₓₓ(x,y) = -f5(x,y) + g_x = rand(size(g_2D)[1]) + g_y = rand(size(g_2D)[2]) + + G_w = zeros(Float64, size(g_2D)...) + G_w[1,:] = 2*g_y + G_w[2,:] = g_y + G_w[3,:] = 3*g_y + + G_e = zeros(Float64, size(g_2D)...) + G_e[end,:] = 2*g_y + G_e[end-1,:] = g_y + G_e[end-2,:] = 3*g_y - v0 = evalOn(g,f0) - v1 = evalOn(g,f1) - v2 = evalOn(g,f2) - v3 = evalOn(g,f3) - v4 = evalOn(g,f4) - v5 = evalOn(g,f5) - v5ₓₓ = evalOn(g,f5ₓₓ) + G_s = zeros(Float64, size(g_2D)...) + G_s[:,1] = 2*g_x + G_s[:,2] = g_x + G_s[:,3] = 3*g_x - @test L isa TensorMapping{T,2,2} where T - @test L' isa TensorMapping{T,2,2} where T + G_n = zeros(Float64, size(g_2D)...) + G_n[:,end] = 2*g_x + G_n[:,end-1] = g_x + G_n[:,end-2] = 3*g_x + + @test op_w'*g_y == G_w + @test op_e'*g_y == G_e + @test op_s'*g_x == G_s + @test op_n'*g_x == G_n + end - # 4th order interior stencil, 2nd order boundary stencil, - # implies that L*v should be exact for v - monomial up to order 3. - # Exact differentiation is measured point-wise. For other grid functions - # the error is measured in the H-norm. - @test norm(L*v0) ≈ 0 atol=5e-10 - @test norm(L*v1) ≈ 0 atol=5e-10 - @test L*v2 ≈ v0 # Seems to be more accurate - @test L*v3 ≈ v1 atol=5e-10 + @testset "Regions" begin + u = fill(3.124) + @test (op_l'*u)[Index(1,Lower)] == 2*u[] + @test (op_l'*u)[Index(2,Lower)] == u[] + @test (op_l'*u)[Index(6,Interior)] == 0 + @test (op_l'*u)[Index(10,Upper)] == 0 + @test (op_l'*u)[Index(11,Upper)] == 0 + + @test (op_r'*u)[Index(1,Lower)] == 0 + @test (op_r'*u)[Index(2,Lower)] == 0 + @test (op_r'*u)[Index(6,Interior)] == 0 + @test (op_r'*u)[Index(10,Upper)] == u[] + @test (op_r'*u)[Index(11,Upper)] == 2*u[] + end + end - h = spacing(g) - l2(v) = sqrt(prod(h)*sum(v.^2)) - @test L*v4 ≈ v2 atol=5e-4 norm=l2 - @test L*v5 ≈ v5ₓₓ atol=5e-4 norm=l2 -end + @testset "Inferred" begin + v = ones(Float64, 11) + u = fill(1.) + + @inferred apply(op_l, v) + @inferred apply(op_r, v) -@testset "DiagonalInnerProduct" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - L = 2.3 - g = EquidistantGrid(77, 0.0, L) - H = DiagonalInnerProduct(g,op.quadratureClosure) - v = ones(Float64, size(g)) + @inferred apply_transpose(op_l, u, 4) + @inferred apply_transpose(op_l, u, Index(1,Lower)) + @inferred apply_transpose(op_l, u, Index(2,Lower)) + @inferred apply_transpose(op_l, u, Index(6,Interior)) + @inferred apply_transpose(op_l, u, Index(10,Upper)) + @inferred apply_transpose(op_l, u, Index(11,Upper)) - @test H isa TensorMapping{T,1,1} where T - @test H' isa TensorMapping{T,1,1} where T - @test sum(H*v) ≈ L - @test H*v == H'*v + @inferred apply_transpose(op_r, u, 4) + @inferred apply_transpose(op_r, u, Index(1,Lower)) + @inferred apply_transpose(op_r, u, Index(2,Lower)) + @inferred apply_transpose(op_r, u, Index(6,Interior)) + @inferred apply_transpose(op_r, u, Index(10,Upper)) + @inferred apply_transpose(op_r, u, Index(11,Upper)) + end + end -@testset "Quadrature" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - Lx = 2.3 - Ly = 5.2 - g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) - - Q = Quadrature(g, op.quadratureClosure) - - @test Q isa TensorMapping{T,2,2} where T - @test Q' isa TensorMapping{T,2,2} where T - - v = ones(Float64, size(g)) - @test sum(Q*v) ≈ Lx*Ly - - v = 2*ones(Float64, size(g)) - @test_broken sum(Q*v) ≈ 2*Lx*Ly - - @test Q*v == Q'*v -end - -@testset "InverseDiagonalInnerProduct" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - L = 2.3 - g = EquidistantGrid(77, 0.0, L) - H = DiagonalInnerProduct(g, op.quadratureClosure) - Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure) - v = evalOn(g, x->sin(x)) - - @test Hi isa TensorMapping{T,1,1} where T - @test Hi' isa TensorMapping{T,1,1} where T - @test Hi*H*v ≈ v - @test Hi*v == Hi'*v -end - -@testset "InverseQuadrature" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - Lx = 7.3 - Ly = 8.2 - g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) - - Q = Quadrature(g, op.quadratureClosure) - Qinv = InverseQuadrature(g, op.quadratureClosure) - v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) - - @test Qinv isa TensorMapping{T,2,2} where T - @test Qinv' isa TensorMapping{T,2,2} where T - @test_broken Qinv*(Q*v) ≈ v - @test Qinv*v == Qinv'*v -end - -@testset "BoundaryRestrictrion" begin +@testset "BoundaryRestriction" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) @testset "Constructors" begin @testset "1D" begin - e_l = BoundaryRestriction{Lower}(op.eClosure,size(g_1D)[1]) - @test e_l == BoundaryRestriction(g_1D,op.eClosure,Lower()) - @test e_l == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) + e_l = BoundaryRestriction(g_1D,op.eClosure,Lower()) + @test e_l == BoundaryRestriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) + @test e_l == BoundaryOperator(g_1D,op.eClosure,Lower()) + @test e_l isa BoundaryOperator{T,Lower} where T @test e_l isa TensorMapping{T,0,1} where T - e_r = BoundaryRestriction{Upper}(op.eClosure,size(g_1D)[1]) - @test e_r == BoundaryRestriction(g_1D,op.eClosure,Upper()) - @test e_r == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) + e_r = BoundaryRestriction(g_1D,op.eClosure,Upper()) + @test e_r == BoundaryRestriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) + @test e_r == BoundaryOperator(g_1D,op.eClosure,Upper()) + @test e_r isa BoundaryOperator{T,Upper} where T @test e_r isa TensorMapping{T,0,1} where T end @testset "2D" begin - e_w = boundary_restriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) + e_w = BoundaryRestriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) @test e_w isa InflatedTensorMapping @test e_w isa TensorMapping{T,1,2} where T end end - e_l = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) - e_r = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) - - e_w = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) - e_e = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) - e_s = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) - e_n = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) + @testset "Application" begin + @testset "1D" begin + e_l = BoundaryRestriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) + e_r = BoundaryRestriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) - @testset "Sizes" begin - @testset "1D" begin - @test domain_size(e_l) == (11,) - @test domain_size(e_r) == (11,) + v = evalOn(g_1D,x->1+x^2) + u = fill(3.124) - @test range_size(e_l) == () - @test range_size(e_r) == () + @test (e_l*v)[] == v[1] + @test (e_r*v)[] == v[end] + @test (e_r*v)[1] == v[end] end @testset "2D" begin - @test domain_size(e_w) == (11,15) - @test domain_size(e_e) == (11,15) - @test domain_size(e_s) == (11,15) - @test domain_size(e_n) == (11,15) - - @test range_size(e_w) == (15,) - @test range_size(e_e) == (15,) - @test range_size(e_s) == (11,) - @test range_size(e_n) == (11,) - end - end - + e_w = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) + e_e = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) + e_s = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) + e_n = BoundaryRestriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) - @testset "Application" begin - @testset "1D" begin - v = evalOn(g_1D,x->1+x^2) - u = fill(3.124) - @test (e_l*v)[] == v[1] - @test (e_r*v)[] == v[end] - @test (e_r*v)[1] == v[end] - @test e_l'*u == [u[]; zeros(10)] - @test e_r'*u == [zeros(10); u[]] - end - - @testset "2D" begin v = rand(11, 15) u = fill(3.124) @@ -349,194 +752,66 @@ @test e_e*v == v[end,:] @test e_s*v == v[:,1] @test e_n*v == v[:,end] - - - g_x = rand(11) - g_y = rand(15) - - G_w = zeros(Float64, (11,15)) - G_w[1,:] = g_y - - G_e = zeros(Float64, (11,15)) - G_e[end,:] = g_y - - G_s = zeros(Float64, (11,15)) - G_s[:,1] = g_x - - G_n = zeros(Float64, (11,15)) - G_n[:,end] = g_x - - @test e_w'*g_y == G_w - @test e_e'*g_y == G_e - @test e_s'*g_x == G_s - @test e_n'*g_x == G_n - end - - @testset "Regions" begin - u = fill(3.124) - @test (e_l'*u)[Index(1,Lower)] == 3.124 - @test (e_l'*u)[Index(2,Lower)] == 0 - @test (e_l'*u)[Index(6,Interior)] == 0 - @test (e_l'*u)[Index(10,Upper)] == 0 - @test (e_l'*u)[Index(11,Upper)] == 0 - - @test (e_r'*u)[Index(1,Lower)] == 0 - @test (e_r'*u)[Index(2,Lower)] == 0 - @test (e_r'*u)[Index(6,Interior)] == 0 - @test (e_r'*u)[Index(10,Upper)] == 0 - @test (e_r'*u)[Index(11,Upper)] == 3.124 end end - - @testset "Inferred" begin - v = ones(Float64, 11) - u = fill(1.) - - @inferred apply(e_l, v) - @inferred apply(e_r, v) +end - @inferred apply_transpose(e_l, u, 4) - @inferred apply_transpose(e_l, u, Index(1,Lower)) - @inferred apply_transpose(e_l, u, Index(2,Lower)) - @inferred apply_transpose(e_l, u, Index(6,Interior)) - @inferred apply_transpose(e_l, u, Index(10,Upper)) - @inferred apply_transpose(e_l, u, Index(11,Upper)) +@testset "NormalDerivative" begin + g_1D = EquidistantGrid(11, 0.0, 1.0) + g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) + @testset "Constructors" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + @testset "1D" begin + d_l = NormalDerivative(g_1D, op.dClosure, Lower()) + @test d_l == NormalDerivative(g_1D, op.dClosure, CartesianBoundary{1,Lower}()) + @test d_l isa BoundaryOperator{T,Lower} where T + @test d_l isa TensorMapping{T,0,1} where T + end + @testset "2D" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + d_w = NormalDerivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) + d_n = NormalDerivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) + Ix = IdentityMapping{Float64}((size(g_2D)[1],)) + Iy = IdentityMapping{Float64}((size(g_2D)[2],)) + d_l = NormalDerivative(restrict(g_2D,1),op.dClosure,Lower()) + d_r = NormalDerivative(restrict(g_2D,2),op.dClosure,Upper()) + @test d_w == d_l⊗Iy + @test d_n == Ix⊗d_r + @test d_w isa TensorMapping{T,1,2} where T + @test d_n isa TensorMapping{T,1,2} where T + end + end + @testset "Accuracy" begin + v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) + v∂x = evalOn(g_2D, (x,y)-> 2*x + y) + v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) + # TODO: Test for higher order polynomials? + @testset "2nd order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) + d_w = NormalDerivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) + d_e = NormalDerivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) + d_s = NormalDerivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) + d_n = NormalDerivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) - @inferred apply_transpose(e_r, u, 4) - @inferred apply_transpose(e_r, u, Index(1,Lower)) - @inferred apply_transpose(e_r, u, Index(2,Lower)) - @inferred apply_transpose(e_r, u, Index(6,Interior)) - @inferred apply_transpose(e_r, u, Index(10,Upper)) - @inferred apply_transpose(e_r, u, Index(11,Upper)) + @test d_w*v ≈ v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 + end + + @testset "4th order" begin + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + d_w = NormalDerivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) + d_e = NormalDerivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) + d_s = NormalDerivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) + d_n = NormalDerivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) + + @test d_w*v ≈ v∂x[1,:] atol = 1e-13 + @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 + @test d_s*v ≈ v∂y[:,1] atol = 1e-13 + @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 + end end +end end -# -# @testset "NormalDerivative" begin -# op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) -# g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) -# -# d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) -# d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) -# d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) -# d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) -# -# -# v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) -# v∂x = evalOn(g, (x,y)-> 2*x + y) -# v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) -# -# @test d_w isa TensorMapping{T,2,1} where T -# @test d_w' isa TensorMapping{T,1,2} where T -# -# @test domain_size(d_w, (3,2)) == (2,) -# @test domain_size(d_e, (3,2)) == (2,) -# @test domain_size(d_s, (3,2)) == (3,) -# @test domain_size(d_n, (3,2)) == (3,) -# -# @test size(d_w'*v) == (6,) -# @test size(d_e'*v) == (6,) -# @test size(d_s'*v) == (5,) -# @test size(d_n'*v) == (5,) -# -# @test d_w'*v .≈ v∂x[1,:] -# @test d_e'*v .≈ v∂x[5,:] -# @test d_s'*v .≈ v∂y[:,1] -# @test d_n'*v .≈ v∂y[:,6] -# -# -# d_x_l = zeros(Float64, 5) -# d_x_u = zeros(Float64, 5) -# for i ∈ eachindex(d_x_l) -# d_x_l[i] = op.dClosure[i-1] -# d_x_u[i] = -op.dClosure[length(d_x_u)-i] -# end -# -# d_y_l = zeros(Float64, 6) -# d_y_u = zeros(Float64, 6) -# for i ∈ eachindex(d_y_l) -# d_y_l[i] = op.dClosure[i-1] -# d_y_u[i] = -op.dClosure[length(d_y_u)-i] -# end -# -# function prod_matrix(x,y) -# G = zeros(Float64, length(x), length(y)) -# for I ∈ CartesianIndices(G) -# G[I] = x[I[1]]*y[I[2]] -# end -# -# return G -# end -# -# g_x = [1,2,3,4.0,5] -# g_y = [5,4,3,2,1.0,11] -# -# G_w = prod_matrix(d_x_l, g_y) -# G_e = prod_matrix(d_x_u, g_y) -# G_s = prod_matrix(g_x, d_y_l) -# G_n = prod_matrix(g_x, d_y_u) -# -# -# @test size(d_w*g_y) == (UnknownDim,6) -# @test size(d_e*g_y) == (UnknownDim,6) -# @test size(d_s*g_x) == (5,UnknownDim) -# @test size(d_n*g_x) == (5,UnknownDim) -# -# # These tests should be moved to where they are possible (i.e we know what the grid should be) -# @test_broken d_w*g_y .≈ G_w -# @test_broken d_e*g_y .≈ G_e -# @test_broken d_s*g_x .≈ G_s -# @test_broken d_n*g_x .≈ G_n -# end -# -# @testset "BoundaryQuadrature" begin -# op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) -# g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) -# -# H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) -# H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) -# H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) -# H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) -# -# v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) -# -# function get_quadrature(N) -# qc = op.quadratureClosure -# q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) -# @assert length(q) == N -# return q -# end -# -# v_w = v[1,:] -# v_e = v[10,:] -# v_s = v[:,1] -# v_n = v[:,11] -# -# q_x = spacing(g)[1].*get_quadrature(10) -# q_y = spacing(g)[2].*get_quadrature(11) -# -# @test H_w isa TensorOperator{T,1} where T -# -# @test domain_size(H_w, (3,)) == (3,) -# @test domain_size(H_n, (3,)) == (3,) -# -# @test range_size(H_w, (3,)) == (3,) -# @test range_size(H_n, (3,)) == (3,) -# -# @test size(H_w*v_w) == (11,) -# @test size(H_e*v_e) == (11,) -# @test size(H_s*v_s) == (10,) -# @test size(H_n*v_n) == (10,) -# -# @test H_w*v_w .≈ q_y.*v_w -# @test H_e*v_e .≈ q_y.*v_e -# @test H_s*v_s .≈ q_x.*v_s -# @test H_n*v_n .≈ q_x.*v_n -# -# @test H_w'*v_w == H_w'*v_w -# @test H_e'*v_e == H_e'*v_e -# @test H_s'*v_s == H_s'*v_s -# @test H_n'*v_n == H_n'*v_n -# end - -end