Mercurial > repos > public > sbplib_julia
diff src/LazyTensors/lazy_tensor_operations.jl @ 1854:654a2b7e6824 tooling/benchmarks
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 11 Jan 2025 10:19:47 +0100 |
parents | 164e26a6cf79 |
children | 21e5fe1545c0 |
line wrap: on
line diff
--- a/src/LazyTensors/lazy_tensor_operations.jl Wed May 31 08:59:34 2023 +0200 +++ b/src/LazyTensors/lazy_tensor_operations.jl Sat Jan 11 10:19:47 2025 +0100 @@ -5,7 +5,7 @@ Allows the result of a `LazyTensor` applied to a vector to be treated as an `AbstractArray`. With a mapping `m` and a vector `v` the TensorApplication object can be created by `m*v`. -The actual result will be calcualted when indexing into `m*v`. +The actual result will be calculated when indexing into `m*v`. """ struct TensorApplication{T,R,D, TM<:LazyTensor{<:Any,R,D}, AA<:AbstractArray{<:Any,D}} <: LazyArray{T,R} t::TM @@ -52,7 +52,7 @@ domain_size(tmt::TensorTranspose) = range_size(tmt.tm) -struct ElementwiseTensorOperation{Op,T,R,D,T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R} +struct ElementwiseTensorOperation{Op,T,R,D,T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} <: LazyTensor{T,R,D} tm1::T1 tm2::T2 @@ -102,7 +102,7 @@ TensorComposition(tm, tmi::IdentityTensor) TensorComposition(tmi::IdentityTensor, tm) -Composes a `Tensormapping` `tm` with an `IdentityTensor` `tmi`, by returning `tm` +Composes a `LazyTensor` `tm` with an `IdentityTensor` `tmi`, by returning `tm` """ function TensorComposition(tm::LazyTensor{T,R,D}, tmi::IdentityTensor{T,D}) where {T,R,D} @boundscheck check_domain_size(tm, range_size(tmi)) @@ -121,11 +121,12 @@ Base.:*(a::T, tm::LazyTensor{T}) where T = TensorComposition(ScalingTensor{T,range_dim(tm)}(a,range_size(tm)), tm) Base.:*(tm::LazyTensor{T}, a::T) where T = a*tm +Base.:-(tm::LazyTensor) = (-one(eltype(tm)))*tm """ InflatedTensor{T,R,D} <: LazyTensor{T,R,D} -An inflated `LazyTensor` with dimensions added before and afer its actual dimensions. +An inflated `LazyTensor` with dimensions added before and after its actual dimensions. """ struct InflatedTensor{T,R,D,D_before,R_middle,D_middle,D_after, TM<:LazyTensor{T,R_middle,D_middle}} <: LazyTensor{T,R,D} before::IdentityTensor{T,D_before} @@ -168,10 +169,10 @@ ) end -InflatedTensor(before::IdentityTensor, tm::LazyTensor{T}) where T = InflatedTensor(before,tm,IdentityTensor{T}()) -InflatedTensor(tm::LazyTensor{T}, after::IdentityTensor) where T = InflatedTensor(IdentityTensor{T}(),tm,after) +InflatedTensor(before::IdentityTensor, tm::LazyTensor) = InflatedTensor(before,tm,IdentityTensor{eltype(tm)}()) +InflatedTensor(tm::LazyTensor, after::IdentityTensor) = InflatedTensor(IdentityTensor{eltype(tm)}(),tm,after) # Resolve ambiguity between the two previous methods -InflatedTensor(I1::IdentityTensor{T}, I2::IdentityTensor{T}) where T = InflatedTensor(I1,I2,IdentityTensor{T}()) +InflatedTensor(I1::IdentityTensor, I2::IdentityTensor) = InflatedTensor(I1,I2,IdentityTensor{promote_type(eltype(I1), eltype(I2))}()) # TODO: Implement some pretty printing in terms of ⊗. E.g InflatedTensor(I(3),B,I(2)) -> I(3)⊗B⊗I(2) @@ -219,7 +220,7 @@ @doc raw""" LazyOuterProduct(tms...) -Creates a `TensorComposition` for the outerproduct of `tms...`. +Creates a `TensorComposition` for the outer product of `tms...`. This is done by separating the outer product into regular products of outer products involving only identity mappings and one non-identity mapping. First let @@ -262,7 +263,7 @@ return itm1∘itm2 end -LazyOuterProduct(t1::IdentityTensor{T}, t2::IdentityTensor{T}) where T = IdentityTensor{T}(t1.size...,t2.size...) +LazyOuterProduct(t1::IdentityTensor, t2::IdentityTensor) = IdentityTensor{promote_type(eltype(t1),eltype(t2))}(t1.size...,t2.size...) LazyOuterProduct(t1::LazyTensor, t2::IdentityTensor) = InflatedTensor(t1, t2) LazyOuterProduct(t1::IdentityTensor, t2::LazyTensor) = InflatedTensor(t1, t2) @@ -278,7 +279,7 @@ `tm`. An example of when this operation is useful is when extending a one -dimensional difference operator `D` to a 2D grid of a ceratin size. In that +dimensional difference operator `D` to a 2D grid of a certain size. In that case we could have ```julia