Mercurial > repos > public > sbplib_julia
diff LazyTensors/src/lazy_tensor_operations.jl @ 267:634453a4e1d8 boundary_conditions
Restructure code in LazyTensors
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 05 Dec 2019 09:28:04 +0100 |
parents | LazyTensors/src/lazy_operations.jl@8ffd9c2e2119 |
children | 11010bb74260 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/LazyTensors/src/lazy_tensor_operations.jl Thu Dec 05 09:28:04 2019 +0100 @@ -0,0 +1,101 @@ +""" + LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R} + +Struct for lazy application of a TensorMapping. Created using `*`. + +Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`. +With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`. +The actual result will be calcualted when indexing into `m*v`. +""" +struct LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R} + t::TensorMapping{T,R,D} + o::AbstractArray{T,D} +end +export LazyTensorMappingApplication + +Base.:*(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) + +Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg{Int,R}) where {T,R,D} = apply(ta.t, ta.o, I) +Base.size(ta::LazyTensorMappingApplication{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o)) +# TODO: What else is needed to implement the AbstractArray interface? + +# # We need the associativity to be a→b→c = a→(b→c), which is the case for '→' +Base.:*(a::TensorMapping{T,R,D}, b::TensorMapping{T,D,K}, args::Union{TensorMapping{T}, AbstractArray{T}}...) where {T,R,D,K} = foldr(*,(a,b,args...)) +# # Should we overload some other infix binary operator? +# →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) +# TODO: We need to be really careful about good error messages. +# For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)? + +""" + LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} + +Struct for lazy transpose of a TensorMapping. + +If a mapping implements the the `apply_transpose` method this allows working with +the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling +the appropriate methods of `m`. +""" +struct LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R} + tm::TensorMapping{T,R,D} +end +export LazyTensorMappingTranspose + +# # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? +Base.adjoint(t::TensorMapping) = LazyTensorMappingTranspose(t) +Base.adjoint(t::LazyTensorMappingTranspose) = t.tm + +apply(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::NTuple{D,Int}) where {T,R,D} = apply_transpose(tm.tm, v, I) +apply_transpose(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::NTuple{R,Int}) where {T,R,D} = apply(tm.tm, v, I) + +range_size(tmt::LazyTensorMappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, d_size) +domain_size(tmt::LazyTensorMappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, r_size) + + + + +struct LazyTensorMappingBinaryOperation{Op,T,R,D,T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R} + A::T1 + B::T2 + + @inline function LazyTensorMappingBinaryOperation{Op,T,R,D}(A::T1,B::T2) where {Op,T,R,D, T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} + return new{Op,T,R,D,T1,T2}(A,B) + end +end + +apply(mb::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{T,D}, I::NTuple{R,Int}) where {T,R,D} = apply(mb.A, v, I...) + apply(mb.B,v,I...) +apply(mb::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{T,D}, I::NTuple{R,Int}) where {T,R,D} = apply(mb.A, v, I...) - apply(mb.B,v,I...) + +range_size(mp::LazyTensorMappingBinaryOperation{Op,T,R,D}, domain_size::NTuple{D,Integer}) where {Op,T,R,D} = range_size(mp.A, domain_size) +domain_size(mp::LazyTensorMappingBinaryOperation{Op,T,R,D}, range_size::NTuple{R,Integer}) where {Op,T,R,D} = domain_size(mp.A, range_size) + +Base.:+(A::TensorMapping{T,R,D}, B::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:+,T,R,D}(A,B) +Base.:-(A::TensorMapping{T,R,D}, B::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:-,T,R,D}(A,B) + + +# TODO: Write tests and documentation for LazyTensorMappingComposition +# struct LazyTensorMappingComposition{T,R,K,D} <: TensorMapping{T,R,D} +# t1::TensorMapping{T,R,K} +# t2::TensorMapping{T,K,D} +# end + +# Base.:∘(s::TensorMapping{T,R,K}, t::TensorMapping{T,K,D}) where {T,R,K,D} = LazyTensorMappingComposition(s,t) + +# function range_size(tm::LazyTensorMappingComposition{T,R,K,D}, domain_size::NTuple{D,Integer}) where {T,R,K,D} +# range_size(tm.t1, domain_size(tm.t2, domain_size)) +# end + +# function domain_size(tm::LazyTensorMappingComposition{T,R,K,D}, range_size::NTuple{R,Integer}) where {T,R,K,D} +# domain_size(tm.t1, domain_size(tm.t2, range_size)) +# end + +# function apply(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::NTuple{R,Int}) where {T,R,K,D} +# apply(c.t1, LazyTensorMappingApplication(c.t2,v), I...) +# end + +# function apply_transpose(c::LazyTensorMappingComposition{T,R,K,D}, v::AbstractArray{T,D}, I::NTuple{D,Int}) where {T,R,K,D} +# apply_transpose(c.t2, LazyTensorMappingApplication(c.t1',v), I...) +# end + +# # Have i gone too crazy with the type parameters? Maybe they aren't all needed? + +# export →