Mercurial > repos > public > sbplib_julia
diff DiffOps/src/DiffOps.jl @ 228:5acef2d5db2e boundary_conditions
Move Laplace operator and related structs/functions to separate file.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 26 Jun 2019 14:38:01 +0200 |
parents | b3506cfbb9d8 |
children | cd60382f392b |
line wrap: on
line diff
--- a/DiffOps/src/DiffOps.jl Wed Jun 26 14:02:28 2019 +0200 +++ b/DiffOps/src/DiffOps.jl Wed Jun 26 14:38:01 2019 +0200 @@ -4,8 +4,6 @@ using SbpOperators using Grids -export Laplace - abstract type DiffOp end # TBD: The "error("not implemented")" thing seems to be hiding good error information. How to fix that? Different way of saying that these should be implemented? @@ -91,146 +89,15 @@ export apply -struct NormalDerivative{N,M,K} - op::D2{Float64,N,M,K} - grid::EquidistantGrid - bId::CartesianBoundary -end - -function apply_transpose(d::NormalDerivative, v::AbstractArray, I::Integer) - u = selectdim(v,3-dim(d.bId),I) - return apply_d(d.op, d.grid.inverse_spacing[dim(d.bId)], u, region(d.bId)) -end - -# Not correct abstraction level -# TODO: Not type stable D:< -function apply(d::NormalDerivative, v::AbstractArray, I::Tuple{Integer,Integer}) - i = I[dim(d.bId)] - j = I[3-dim(d.bId)] - N_i = d.grid.size[dim(d.bId)] - - r = getregion(i, closureSize(d.op), N_i) - - if r != region(d.bId) - return 0 - end - - if r == Lower - # Note, closures are indexed by offset. Fix this D:< - return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[i-1]*v[j] - elseif r == Upper - return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[N_i-j]*v[j] - end -end - -struct BoundaryValue{N,M,K} - op::D2{Float64,N,M,K} - grid::EquidistantGrid - bId::CartesianBoundary -end - -function apply(e::BoundaryValue, v::AbstractArray, I::Tuple{Integer,Integer}) - i = I[dim(e.bId)] - j = I[3-dim(e.bId)] - N_i = e.grid.size[dim(e.bId)] - - r = getregion(i, closureSize(e.op), N_i) - - if r != region(e.bId) - return 0 - end - - if r == Lower - # Note, closures are indexed by offset. Fix this D:< - return e.op.eClosure[i-1]*v[j] - elseif r == Upper - return e.op.eClosure[N_i-j]*v[j] - end -end - -function apply_transpose(e::BoundaryValue, v::AbstractArray, I::Integer) - u = selectdim(v,3-dim(e.bId),I) - return apply_e(e.op, u, region(e.bId)) -end - -struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim} - grid::EquidistantGrid{Dim,T} - a::T - op::D2{Float64,N,M,K} - # e::BoundaryValue - # d::NormalDerivative -end - -function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim - error("not implemented") -end - -# u = L*v -function apply(L::Laplace{1}, v::AbstractVector, i::Int) - uᵢ = L.a * SbpOperators.apply(L.op, L.grid.spacing[1], v, i) - return uᵢ -end - -@inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} - # 2nd x-derivative - @inbounds vx = view(v, :, Int(I[2])) - @inbounds uᵢ = L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[1], vx , I[1]) - # 2nd y-derivative - @inbounds vy = view(v, Int(I[1]), :) - @inbounds uᵢ += L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[2], vy, I[2]) - # NOTE: the package qualifier 'SbpOperators' can problably be removed once all "applying" objects use LazyTensors - return uᵢ -end - -# Slow but maybe convenient? -function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2}) - I = Index{Unknown}.(Tuple(i)) - apply(L, v, I) -end - -struct BoundaryOperator - -end - - """ A BoundaryCondition should implement the method sat(::DiffOp, v::AbstractArray, data::AbstractArray, ...) """ abstract type BoundaryCondition end -struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end - -function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} - e = BoundaryValue(L.op, L.grid, Bid()) - d = NormalDerivative(L.op, L.grid, Bid()) - Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid()) - # TODO: Implement BoundaryQuadrature method - - return -L.Hi*e*Hᵧ*(d'*v - g) - # Need to handle d'*v - g so that it is an AbstractArray that TensorMappings can act on -end - -struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition - tau::Float64 -end -function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} - e = BoundaryValue(L.op, L.grid, Bid()) - d = NormalDerivative(L.op, L.grid, Bid()) - Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid()) - # TODO: Implement BoundaryQuadrature method - - return -L.Hi*(tau/h*e + d)*Hᵧ*(e'*v - g) - # Need to handle scalar multiplication and addition of TensorMapping -end +include("laplace.jl") +export Laplace -# function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D -# return apply(s.L, v, i) + -# sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + -# sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + -# sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + -# sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) -# end -end # module \ No newline at end of file +end # module