Mercurial > repos > public > sbplib_julia
diff test/Grids/mapped_grid_test.jl @ 1506:535f32316637 feature/grids/curvilinear
Rename from curvilinear to mapped
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 16 Feb 2024 15:28:19 +0100 |
parents | test/Grids/curvilinear_grid_test.jl@704a84eef8b6 |
children | 69790e9d1652 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/Grids/mapped_grid_test.jl Fri Feb 16 15:28:19 2024 +0100 @@ -0,0 +1,193 @@ +using Sbplib.Grids +using Sbplib.RegionIndices +using Test +using StaticArrays + +@testset "MappedGrid" begin + lg = equidistant_grid((11,11), (0,0), (1,1)) # TODO: Change dims of the grid to be different + x̄ = map(ξ̄ -> 2ξ̄, lg) + J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) + mg = MappedGrid(lg, x̄, J) + + # TODO: Test constructor for different dims of range and domain for the coordinates + # TODO: Test constructor with different type than TensorGrid. a dummy type? + + @test_broken false # @test_throws ArgumentError("Sizes must match") MappedGrid(lg, map(ξ̄ -> @SArray[ξ̄[1], ξ̄[2], -ξ̄[1]], lg), rand(SMatrix{2,3,Float64},15,11)) + + + @test mg isa Grid{SVector{2, Float64},2} + + @test jacobian(mg) isa Array{<:AbstractMatrix} + @test logicalgrid(mg) isa Grid + + @testset "Indexing Interface" begin + mg = MappedGrid(lg, x̄, J) + @test mg[1,1] == [0.0, 0.0] + @test mg[4,2] == [0.6, 0.2] + @test mg[6,10] == [1., 1.8] + + @test mg[begin, begin] == [0.0, 0.0] + @test mg[end,end] == [2.0, 2.0] + @test mg[begin,end] == [0., 2.] + + @test eachindex(mg) == CartesianIndices((11,11)) + + @testset "cartesian indexing" begin + cases = [ + (1,1) , + (3,5) , + (10,6), + (1,1) , + (3,2) , + ] + + @testset "i = $is" for (lg, is) ∈ cases + @test mg[CartesianIndex(is...)] == mg[is...] + end + end + + @testset "eachindex" begin + @test eachindex(mg) == CartesianIndices((11,11)) + end + + @testset "firstindex" begin + @test firstindex(mg, 1) == 1 + @test firstindex(mg, 2) == 1 + end + + @testset "lastindex" begin + @test lastindex(mg, 1) == 11 + @test lastindex(mg, 2) == 11 + end + end + # TODO: Test with different types of logical grids + + @testset "Iterator interface" begin + sg = MappedGrid( + equidistant_grid((15,11), (0,0), (1,1)), + map(ξ̄ -> @SArray[ξ̄[1], ξ̄[2], -ξ̄[1]], lg), rand(SMatrix{2,3,Float64},15,11) + ) + + @test eltype(mg) == SVector{2,Float64} + @test eltype(sg) == SVector{3,Float64} + + @test eltype(typeof(mg)) == SVector{2,Float64} + @test eltype(typeof(sg)) == SVector{3,Float64} + + @test size(mg) == (11,11) + @test size(sg) == (15,11) + + @test size(mg,2) == 11 + @test size(sg,2) == 11 + + @test length(mg) == 121 + @test length(sg) == 165 + + @test Base.IteratorSize(mg) == Base.HasShape{2}() + @test Base.IteratorSize(typeof(mg)) == Base.HasShape{2}() + + @test Base.IteratorSize(sg) == Base.HasShape{2}() + @test Base.IteratorSize(typeof(sg)) == Base.HasShape{2}() + + element, state = iterate(mg) + @test element == lg[1,1].*2 + element, _ = iterate(mg, state) + @test element == lg[2,1].*2 + + element, state = iterate(sg) + @test element == sg.physicalcoordinates[1,1] + element, _ = iterate(sg, state) + @test element == sg.physicalcoordinates[2,1] + + @test collect(mg) == 2 .* lg + end + + @testset "Base" begin + @test ndims(mg) == 2 + end + + @testset "boundary_identifiers" begin + @test boundary_identifiers(mg) == boundary_identifiers(lg) + end + + @testset "boundary_indices" begin + @test boundary_indices(mg, CartesianBoundary{1,Lower}()) == boundary_indices(lg,CartesianBoundary{1,Lower}()) + @test boundary_indices(mg, CartesianBoundary{2,Lower}()) == boundary_indices(lg,CartesianBoundary{2,Lower}()) + @test boundary_indices(mg, CartesianBoundary{1,Upper}()) == boundary_indices(lg,CartesianBoundary{1,Upper}()) + end + + @testset "boundary_grid" begin + x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] + J((ξ, η)) = @SMatrix[ + 1 0; + η*(2ξ-1) 1+ξ*(ξ-1); + ] + + mg = mapped_grid(x̄, J, 10, 11) + J1((ξ, η)) = @SMatrix[ + 1 ; + η*(2ξ-1); + ] + J2((ξ, η)) = @SMatrix[ + 0; + 1+ξ*(ξ-1); + ] + + function test_boundary_grid(mg, bId, Jb) + bg = boundary_grid(mg, bId) + + lg = logicalgrid(mg) + expected_bg = MappedGrid( + boundary_grid(lg, bId), + map(x̄, boundary_grid(lg, bId)), + map(Jb, boundary_grid(lg, bId)), + ) + + @testset let bId=bId, bg=bg, expected_bg=expected_bg + @test collect(bg) == collect(expected_bg) + @test logicalgrid(bg) == logicalgrid(expected_bg) + @test jacobian(bg) == jacobian(expected_bg) + # TODO: Implement equality of a curvilinear grid and simlify the above + end + end + + @testset test_boundary_grid(mg, TensorGridBoundary{1, Lower}(), J2) + @testset test_boundary_grid(mg, TensorGridBoundary{1, Upper}(), J2) + @testset test_boundary_grid(mg, TensorGridBoundary{2, Lower}(), J1) + @testset test_boundary_grid(mg, TensorGridBoundary{2, Upper}(), J1) + end + + # TBD: Should curvilinear grid support refining and coarsening? + # This would require keeping the coordinate mapping around which seems burdensome, and might increase compilation time? + @testset "refine" begin + @test_broken refine(mg, 1) == mg + @test_broken refine(mg, 2) == MappedGrid(refine(lg,2), x̄, J) + @test_broken refine(mg, 3) == MappedGrid(refine(lg,3), x̄, J) + end + + @testset "coarsen" begin + lg = equidistant_grid((11,11), (0,0), (1,1)) # TODO: Change dims of the grid to be different + x̄ = map(ξ̄ -> 2ξ̄, lg) + J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) + mg = MappedGrid(lg, x̄, J) + + @test_broken coarsen(mg, 1) == mg + @test_broken coarsen(mg, 2) == MappedGrid(coarsen(lg,2), x̄, J) + + @test_broken false # @test_throws DomainError(3, "Size minus 1 must be divisible by the ratio.") coarsen(mg, 3) + end +end + +@testset "mapped_grid" begin + x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))] + J((ξ, η)) = @SMatrix[ + 1 0; + η*(2ξ-1) 1+ξ*(ξ-1); + ] + mg = mapped_grid(x̄, J, 10, 11) + @test mg isa MappedGrid{SVector{2,Float64}, 2} + + lg = equidistant_grid((10,11), (0,0), (1,1)) + @test logicalgrid(mg) == lg + @test collect(mg) == map(x̄, lg) +end