diff test/Grids/mapped_grid_test.jl @ 1506:535f32316637 feature/grids/curvilinear

Rename from curvilinear to mapped
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 16 Feb 2024 15:28:19 +0100
parents test/Grids/curvilinear_grid_test.jl@704a84eef8b6
children 69790e9d1652
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test/Grids/mapped_grid_test.jl	Fri Feb 16 15:28:19 2024 +0100
@@ -0,0 +1,193 @@
+using Sbplib.Grids
+using Sbplib.RegionIndices
+using Test
+using StaticArrays
+
+@testset "MappedGrid" begin
+    lg = equidistant_grid((11,11), (0,0), (1,1)) # TODO: Change dims of the grid to be different
+    x̄ = map(ξ̄ -> 2ξ̄, lg)
+    J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg)
+    mg = MappedGrid(lg, x̄, J)
+
+    # TODO: Test constructor for different dims of range and domain for the coordinates
+    # TODO: Test constructor with different type than TensorGrid. a dummy type?
+
+    @test_broken false # @test_throws ArgumentError("Sizes must match") MappedGrid(lg, map(ξ̄ -> @SArray[ξ̄[1], ξ̄[2], -ξ̄[1]], lg), rand(SMatrix{2,3,Float64},15,11))
+
+
+    @test mg isa Grid{SVector{2, Float64},2}
+
+    @test jacobian(mg) isa Array{<:AbstractMatrix}
+    @test logicalgrid(mg) isa Grid
+
+    @testset "Indexing Interface" begin
+        mg = MappedGrid(lg, x̄, J)
+        @test mg[1,1] == [0.0, 0.0]
+        @test mg[4,2] == [0.6, 0.2]
+        @test mg[6,10] == [1., 1.8]
+
+        @test mg[begin, begin] == [0.0, 0.0]
+        @test mg[end,end] == [2.0, 2.0]
+        @test mg[begin,end] == [0., 2.]
+
+        @test eachindex(mg) == CartesianIndices((11,11))
+
+        @testset "cartesian indexing" begin
+            cases = [
+                 (1,1) ,
+                 (3,5) ,
+                 (10,6),
+                 (1,1) ,
+                 (3,2) ,
+            ]
+
+            @testset "i = $is" for (lg, is) ∈ cases
+                @test mg[CartesianIndex(is...)] == mg[is...]
+            end
+        end
+
+        @testset "eachindex" begin
+            @test eachindex(mg) == CartesianIndices((11,11))
+        end
+
+        @testset "firstindex" begin
+            @test firstindex(mg, 1) == 1
+            @test firstindex(mg, 2) == 1
+        end
+
+        @testset "lastindex" begin
+            @test lastindex(mg, 1) == 11
+            @test lastindex(mg, 2) == 11
+        end
+    end
+    # TODO: Test with different types of logical grids
+
+    @testset "Iterator interface" begin
+        sg = MappedGrid(
+            equidistant_grid((15,11), (0,0), (1,1)),
+            map(ξ̄ -> @SArray[ξ̄[1], ξ̄[2], -ξ̄[1]], lg), rand(SMatrix{2,3,Float64},15,11)
+        )
+
+        @test eltype(mg) == SVector{2,Float64}
+        @test eltype(sg) == SVector{3,Float64}
+
+        @test eltype(typeof(mg)) == SVector{2,Float64}
+        @test eltype(typeof(sg)) == SVector{3,Float64}
+
+        @test size(mg) == (11,11)
+        @test size(sg) == (15,11)
+
+        @test size(mg,2) == 11
+        @test size(sg,2) == 11
+
+        @test length(mg) == 121
+        @test length(sg) == 165
+
+        @test Base.IteratorSize(mg) == Base.HasShape{2}()
+        @test Base.IteratorSize(typeof(mg)) == Base.HasShape{2}()
+
+        @test Base.IteratorSize(sg) == Base.HasShape{2}()
+        @test Base.IteratorSize(typeof(sg)) == Base.HasShape{2}()
+
+        element, state = iterate(mg)
+        @test element == lg[1,1].*2
+        element, _ =  iterate(mg, state)
+        @test element == lg[2,1].*2
+
+        element, state = iterate(sg)
+        @test element == sg.physicalcoordinates[1,1]
+        element, _ = iterate(sg, state)
+        @test element == sg.physicalcoordinates[2,1]
+
+        @test collect(mg) == 2 .* lg
+    end
+
+    @testset "Base" begin
+        @test ndims(mg) == 2
+    end
+
+    @testset "boundary_identifiers" begin
+        @test boundary_identifiers(mg) == boundary_identifiers(lg)
+    end
+
+    @testset "boundary_indices" begin
+        @test boundary_indices(mg, CartesianBoundary{1,Lower}()) == boundary_indices(lg,CartesianBoundary{1,Lower}())
+        @test boundary_indices(mg, CartesianBoundary{2,Lower}()) == boundary_indices(lg,CartesianBoundary{2,Lower}())
+        @test boundary_indices(mg, CartesianBoundary{1,Upper}()) == boundary_indices(lg,CartesianBoundary{1,Upper}())
+    end
+
+    @testset "boundary_grid" begin
+        x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))]
+        J((ξ, η)) = @SMatrix[
+            1         0;
+            η*(2ξ-1)  1+ξ*(ξ-1);
+        ]
+
+        mg = mapped_grid(x̄, J, 10, 11)
+        J1((ξ, η)) = @SMatrix[
+            1       ;
+            η*(2ξ-1);
+        ]
+        J2((ξ, η)) = @SMatrix[
+            0;
+            1+ξ*(ξ-1);
+        ]
+
+        function test_boundary_grid(mg, bId, Jb)
+            bg = boundary_grid(mg, bId)
+
+            lg = logicalgrid(mg)
+            expected_bg = MappedGrid(
+                boundary_grid(lg, bId),
+                map(x̄, boundary_grid(lg, bId)),
+                map(Jb, boundary_grid(lg, bId)),
+            )
+
+            @testset let bId=bId, bg=bg, expected_bg=expected_bg
+                @test collect(bg) == collect(expected_bg)
+                @test logicalgrid(bg) == logicalgrid(expected_bg)
+                @test jacobian(bg) == jacobian(expected_bg)
+                # TODO: Implement equality of a curvilinear grid and simlify the above
+            end
+        end
+
+        @testset test_boundary_grid(mg, TensorGridBoundary{1, Lower}(), J2)
+        @testset test_boundary_grid(mg, TensorGridBoundary{1, Upper}(), J2)
+        @testset test_boundary_grid(mg, TensorGridBoundary{2, Lower}(), J1)
+        @testset test_boundary_grid(mg, TensorGridBoundary{2, Upper}(), J1)
+    end
+
+    # TBD: Should curvilinear grid support refining and coarsening?
+    # This would require keeping the coordinate mapping around which seems burdensome, and might increase compilation time?
+    @testset "refine" begin
+        @test_broken refine(mg, 1) == mg
+        @test_broken refine(mg, 2) == MappedGrid(refine(lg,2), x̄, J)
+        @test_broken refine(mg, 3) == MappedGrid(refine(lg,3), x̄, J)
+    end
+
+    @testset "coarsen" begin
+        lg = equidistant_grid((11,11), (0,0), (1,1)) # TODO: Change dims of the grid to be different
+        x̄ = map(ξ̄ -> 2ξ̄, lg)
+        J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg)
+        mg = MappedGrid(lg, x̄, J)
+
+        @test_broken coarsen(mg, 1) == mg
+        @test_broken coarsen(mg, 2) == MappedGrid(coarsen(lg,2), x̄, J)
+
+        @test_broken false # @test_throws DomainError(3, "Size minus 1 must be divisible by the ratio.") coarsen(mg, 3)
+    end
+end
+
+@testset "mapped_grid" begin
+    x̄((ξ, η)) = @SVector[ξ, η*(1+ξ*(ξ-1))]
+    J((ξ, η)) = @SMatrix[
+        1         0;
+        η*(2ξ-1)  1+ξ*(ξ-1);
+    ]
+    mg = mapped_grid(x̄, J, 10, 11)
+    @test mg isa MappedGrid{SVector{2,Float64}, 2}
+
+    lg = equidistant_grid((10,11), (0,0), (1,1))
+    @test logicalgrid(mg) == lg
+    @test collect(mg) == map(x̄, lg)
+end