Mercurial > repos > public > sbplib_julia
diff src/Grids/tensor_grid.jl @ 1858:4a9be96f2569 feature/documenter_logo
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 12 Jan 2025 21:18:44 +0100 |
parents | 054447ac4b0e |
children | 516eaabf1169 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Grids/tensor_grid.jl Sun Jan 12 21:18:44 2025 +0100 @@ -0,0 +1,145 @@ +""" + TensorGrid{T,D} <: Grid{T,D} + +A grid constructed as the tensor product of other grids. + +Currently only supports grids with the `HasShape`-trait. +""" +struct TensorGrid{T,D,GT<:NTuple{N,Grid} where N} <: Grid{T,D} + grids::GT + + function TensorGrid(gs...) + T = mapreduce(eltype, combined_coordinate_vector_type, gs) + D = sum(ndims, gs) + + return new{T,D,typeof(gs)}(gs) + end +end + +# Indexing interface +function Base.getindex(g::TensorGrid, I::Vararg{Int}) + szs = ndims.(g.grids) + + Is = LazyTensors.split_tuple(I, szs) + ps = map((g,I)->SVector(g[I...]), g.grids, Is) + + return vcat(ps...) +end + +function Base.eachindex(g::TensorGrid) + szs = LazyTensors.concatenate_tuples(size.(g.grids)...) + return CartesianIndices(szs) +end + +function Base.axes(g::TensorGrid, d) + i, ld = grid_and_local_dim_index(ndims.(g.grids), d) + return axes(g.grids[i], ld) +end + +# Iteration interface +Base.iterate(g::TensorGrid) = iterate(Iterators.product(g.grids...)) |> _iterate_combine_coords +Base.iterate(g::TensorGrid, state) = iterate(Iterators.product(g.grids...), state) |> _iterate_combine_coords +_iterate_combine_coords(::Nothing) = nothing +_iterate_combine_coords((next,state)) = combine_coordinates(next...), state + +Base.IteratorSize(::Type{<:TensorGrid{<:Any, D}}) where D = Base.HasShape{D}() +Base.length(g::TensorGrid) = prod(length, g.grids) +Base.size(g::TensorGrid) = LazyTensors.concatenate_tuples(size.(g.grids)...) +Base.size(g::TensorGrid, d) = size(g)[d] + +function spacing(g::TensorGrid) + relevant_grids = filter(g->!isa(g,ZeroDimGrid),g.grids) + return spacing.(relevant_grids) +end + +function min_spacing(g::TensorGrid) + relevant_grids = filter(g->!isa(g,ZeroDimGrid),g.grids) + d = min_spacing.(relevant_grids) + return minimum(d) +end + +refine(g::TensorGrid, r::Int) = mapreduce(g->refine(g,r), TensorGrid, g.grids) +coarsen(g::TensorGrid, r::Int) = mapreduce(g->coarsen(g,r), TensorGrid, g.grids) + +""" + TensorGridBoundary{N, BID} <: BoundaryIdentifier + +A boundary identifier for a tensor grid. `N` Specifies which grid in the +tensor product and `BID` which boundary on that grid. +""" +struct TensorGridBoundary{N, BID} <: BoundaryIdentifier end +grid_id(::TensorGridBoundary{N, BID}) where {N, BID} = N +boundary_id(::TensorGridBoundary{N, BID}) where {N, BID} = BID() + +""" + boundary_identifiers(g::TensorGrid) + +Returns a tuple containing the boundary identifiers of `g`. +""" +function boundary_identifiers(g::TensorGrid) + per_grid = map(eachindex(g.grids)) do i + return map(bid -> TensorGridBoundary{i, typeof(bid)}(), boundary_identifiers(g.grids[i])) + end + return LazyTensors.concatenate_tuples(per_grid...) +end + +""" + boundary_grid(g::TensorGrid, id::TensorGridBoundary) + +The grid for the boundary of `g` specified by `id`. +""" +function boundary_grid(g::TensorGrid, id::TensorGridBoundary) + local_boundary_grid = boundary_grid(g.grids[grid_id(id)], boundary_id(id)) + new_grids = Base.setindex(g.grids, local_boundary_grid, grid_id(id)) + return TensorGrid(new_grids...) +end + +function boundary_indices(g::TensorGrid, id::TensorGridBoundary) + per_grid_ind = map(g.grids) do g + ntuple(i->:, ndims(g)) + end + + local_b_ind = boundary_indices(g.grids[grid_id(id)], boundary_id(id)) + b_ind = Base.setindex(per_grid_ind, local_b_ind, grid_id(id)) + + return LazyTensors.concatenate_tuples(b_ind...) +end + +function combined_coordinate_vector_type(coordinate_types...) + combined_coord_length = mapreduce(_ncomponents, +, coordinate_types) + combined_coord_type = mapreduce(eltype, promote_type, coordinate_types) + + if combined_coord_length == 1 + return combined_coord_type + else + return SVector{combined_coord_length, combined_coord_type} + end +end + +function combine_coordinates(coords...) + return mapreduce(SVector, vcat, coords) +end + +""" + grid_and_local_dim_index(nds, d) + +Given a tuple of number of dimensions `nds`, and a global dimension index `d`, +calculate which grid index, and local dimension, `d` corresponds to. + +`nds` would come from broadcasting `ndims` on the grids tuple of a +`TensorGrid`. If you are interested in a dimension `d` of a tensor grid `g` +```julia +gi, ldi = grid_and_local_dim_index(ndims.(g.grids), d) +``` +tells you which grid it belongs to (`gi`) and which index it is at within that +grid (`ldi`). +""" +function grid_and_local_dim_index(nds, d) + I = findfirst(>=(d), cumsum(nds)) + + if I == 1 + return (1, d) + else + return (I, d-cumsum(nds)[I-1]) + end +end