diff src/Grids/tensor_grid.jl @ 1858:4a9be96f2569 feature/documenter_logo

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Sun, 12 Jan 2025 21:18:44 +0100
parents 054447ac4b0e
children 516eaabf1169
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Grids/tensor_grid.jl	Sun Jan 12 21:18:44 2025 +0100
@@ -0,0 +1,145 @@
+"""
+    TensorGrid{T,D} <: Grid{T,D}
+
+A grid constructed as the tensor product of other grids.
+
+Currently only supports grids with the `HasShape`-trait.
+"""
+struct TensorGrid{T,D,GT<:NTuple{N,Grid} where N} <: Grid{T,D}
+    grids::GT
+
+    function TensorGrid(gs...)
+        T = mapreduce(eltype, combined_coordinate_vector_type, gs)
+        D = sum(ndims, gs)
+
+        return new{T,D,typeof(gs)}(gs)
+    end
+end
+
+# Indexing interface
+function Base.getindex(g::TensorGrid, I::Vararg{Int})
+    szs = ndims.(g.grids)
+
+    Is = LazyTensors.split_tuple(I, szs)
+    ps = map((g,I)->SVector(g[I...]), g.grids, Is)
+
+    return vcat(ps...)
+end
+
+function Base.eachindex(g::TensorGrid)
+    szs = LazyTensors.concatenate_tuples(size.(g.grids)...)
+    return CartesianIndices(szs)
+end
+
+function Base.axes(g::TensorGrid, d)
+    i, ld = grid_and_local_dim_index(ndims.(g.grids), d)
+    return axes(g.grids[i], ld)
+end
+
+# Iteration interface
+Base.iterate(g::TensorGrid) = iterate(Iterators.product(g.grids...)) |> _iterate_combine_coords
+Base.iterate(g::TensorGrid, state) = iterate(Iterators.product(g.grids...), state) |> _iterate_combine_coords
+_iterate_combine_coords(::Nothing) = nothing
+_iterate_combine_coords((next,state)) = combine_coordinates(next...), state
+
+Base.IteratorSize(::Type{<:TensorGrid{<:Any, D}}) where D = Base.HasShape{D}()
+Base.length(g::TensorGrid) = prod(length, g.grids)
+Base.size(g::TensorGrid) = LazyTensors.concatenate_tuples(size.(g.grids)...)
+Base.size(g::TensorGrid, d) = size(g)[d]
+
+function spacing(g::TensorGrid)
+    relevant_grids = filter(g->!isa(g,ZeroDimGrid),g.grids)
+    return spacing.(relevant_grids)
+end
+
+function min_spacing(g::TensorGrid)
+    relevant_grids = filter(g->!isa(g,ZeroDimGrid),g.grids)
+    d = min_spacing.(relevant_grids)
+    return minimum(d)
+end
+
+refine(g::TensorGrid, r::Int) = mapreduce(g->refine(g,r), TensorGrid, g.grids)
+coarsen(g::TensorGrid, r::Int) = mapreduce(g->coarsen(g,r), TensorGrid, g.grids)
+
+"""
+    TensorGridBoundary{N, BID} <: BoundaryIdentifier
+
+A boundary identifier for a tensor grid. `N` Specifies which grid in the
+tensor product and `BID` which boundary on that grid.
+"""
+struct TensorGridBoundary{N, BID} <: BoundaryIdentifier end
+grid_id(::TensorGridBoundary{N, BID}) where {N, BID} = N
+boundary_id(::TensorGridBoundary{N, BID}) where {N, BID} = BID()
+
+"""
+    boundary_identifiers(g::TensorGrid)
+
+Returns a tuple containing the boundary identifiers of `g`.
+"""
+function boundary_identifiers(g::TensorGrid)
+    per_grid = map(eachindex(g.grids)) do i
+        return map(bid -> TensorGridBoundary{i, typeof(bid)}(), boundary_identifiers(g.grids[i]))
+    end
+    return LazyTensors.concatenate_tuples(per_grid...)
+end
+
+"""
+    boundary_grid(g::TensorGrid, id::TensorGridBoundary)
+
+The grid for the boundary of `g` specified by `id`.
+"""
+function boundary_grid(g::TensorGrid, id::TensorGridBoundary)
+    local_boundary_grid = boundary_grid(g.grids[grid_id(id)], boundary_id(id))
+    new_grids = Base.setindex(g.grids, local_boundary_grid, grid_id(id))
+    return TensorGrid(new_grids...)
+end
+
+function boundary_indices(g::TensorGrid, id::TensorGridBoundary)
+    per_grid_ind = map(g.grids) do g
+        ntuple(i->:, ndims(g))
+    end
+
+    local_b_ind = boundary_indices(g.grids[grid_id(id)], boundary_id(id))
+    b_ind = Base.setindex(per_grid_ind, local_b_ind, grid_id(id))
+
+    return LazyTensors.concatenate_tuples(b_ind...)
+end
+
+function combined_coordinate_vector_type(coordinate_types...)
+    combined_coord_length = mapreduce(_ncomponents, +, coordinate_types)
+    combined_coord_type = mapreduce(eltype, promote_type, coordinate_types)
+
+    if combined_coord_length == 1
+        return combined_coord_type
+    else
+        return SVector{combined_coord_length, combined_coord_type}
+    end
+end
+
+function combine_coordinates(coords...)
+    return mapreduce(SVector, vcat, coords)
+end
+
+"""
+    grid_and_local_dim_index(nds, d)
+
+Given a tuple of number of dimensions `nds`, and a global dimension index `d`,
+calculate which grid index, and local dimension, `d` corresponds to.
+
+`nds` would come from broadcasting `ndims` on the grids tuple of a
+`TensorGrid`. If you are interested in a dimension `d` of a tensor grid `g`
+```julia
+gi, ldi = grid_and_local_dim_index(ndims.(g.grids), d)
+```
+tells you which grid it belongs to (`gi`) and which index it is at within that
+grid (`ldi`).
+"""
+function grid_and_local_dim_index(nds, d)
+    I = findfirst(>=(d), cumsum(nds))
+
+    if I == 1
+        return (1, d)
+    else
+        return (I, d-cumsum(nds)[I-1])
+    end
+end