Mercurial > repos > public > sbplib_julia
diff test/SbpOperators/volumeops/derivatives/second_derivative_test.jl @ 1291:356ec6a72974 refactor/grids
Implement changes in SbpOperators
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 07 Mar 2023 09:48:00 +0100 |
parents | 7d52c4835d15 |
children | 43aaf710463e |
line wrap: on
line diff
--- a/test/SbpOperators/volumeops/derivatives/second_derivative_test.jl Tue Mar 07 09:21:27 2023 +0100 +++ b/test/SbpOperators/volumeops/derivatives/second_derivative_test.jl Tue Mar 07 09:48:00 2023 +0100 @@ -8,31 +8,25 @@ # TODO: Refactor these test to look more like the tests in first_derivative_test.jl. -@test_skip @testset "SecondDerivative" begin +@testset "SecondDerivative" begin operator_path = sbp_operators_path()*"standard_diagonal.toml" stencil_set = read_stencil_set(operator_path; order=4) inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) Lx = 3.5 Ly = 3. - g_1D = EquidistantGrid(121, 0.0, Lx) - g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) + g_1D = equidistant_grid(121, 0.0, Lx) + g_2D = equidistant_grid((121,123), (0.0, 0.0), (Lx, Ly)) @testset "Constructors" begin @testset "1D" begin - Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils,1) - @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils) - @test Dₓₓ == second_derivative(g_1D,stencil_set,1) - @test Dₓₓ == second_derivative(g_1D,stencil_set) - @test Dₓₓ isa VolumeOperator + Dₓₓ = second_derivative(g_1D, stencil_set) + @test Dₓₓ == second_derivative(g_1D, inner_stencil, closure_stencils) + @test Dₓₓ isa LazyTensor{Float64,1,1} end @testset "2D" begin - Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1) - D2 = second_derivative(g_1D,inner_stencil,closure_stencils,1) - I = IdentityTensor{Float64}(size(g_2D)[2]) - @test Dₓₓ == D2⊗I - @test Dₓₓ == second_derivative(g_2D,stencil_set,1) - @test Dₓₓ isa LazyTensor{T,2,2} where T + Dₓₓ = second_derivative(g_2D,stencil_set,1) + @test Dₓₓ isa LazyTensor{Float64,2,2} end end @@ -45,10 +39,10 @@ maxOrder = 4; for i = 0:maxOrder-1 f_i(x) = 1/factorial(i)*x^i - monomials = (monomials...,evalOn(g_1D,f_i)) + monomials = (monomials...,eval_on(g_1D,f_i)) end - v = evalOn(g_1D,x -> sin(x)) - vₓₓ = evalOn(g_1D,x -> -sin(x)) + v = eval_on(g_1D,x -> sin(x)) + vₓₓ = eval_on(g_1D,x -> -sin(x)) # 2nd order interior stencil, 1nd order boundary stencil, # implies that L*v should be exact for monomials up to order 2. @@ -77,15 +71,15 @@ end @testset "2D" begin - l2(v) = sqrt(prod(spacing(g_2D))*sum(v.^2)); + l2(v) = sqrt(prod(spacing.(g_2D.grids))*sum(v.^2)); binomials = () maxOrder = 4; for i = 0:maxOrder-1 f_i(x,y) = 1/factorial(i)*y^i + x^i - binomials = (binomials...,evalOn(g_2D,f_i)) + binomials = (binomials...,eval_on(g_2D,f_i)) end - v = evalOn(g_2D, (x,y) -> sin(x)+cos(y)) - v_yy = evalOn(g_2D,(x,y) -> -cos(y)) + v = eval_on(g_2D, (x,y) -> sin(x)+cos(y)) + v_yy = eval_on(g_2D,(x,y) -> -cos(y)) # 2nd order interior stencil, 1st order boundary stencil, # implies that L*v should be exact for binomials up to order 2. @@ -94,7 +88,7 @@ Dyy = second_derivative(g_2D,stencil_set,2) @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 - @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 + @test Dyy*binomials[3] ≈ eval_on(g_2D,(x,y)->1.) atol = 5e-9 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 end @@ -107,8 +101,8 @@ # due to accumulation of round-off errors/cancellation errors? @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 - @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 - @test Dyy*binomials[4] ≈ evalOn(g_2D,(x,y)->y) atol = 5e-9 + @test Dyy*binomials[3] ≈ eval_on(g_2D,(x,y)->1.) atol = 5e-9 + @test Dyy*binomials[4] ≈ eval_on(g_2D,(x,y)->y) atol = 5e-9 @test Dyy*v ≈ v_yy rtol = 5e-4 norm = l2 end end