diff test/SbpOperators/volumeops/derivatives/first_derivative_test.jl @ 982:2a4f36aca2ea feature/variable_derivatives

Merge feature/variable_derivatives
author Jonatan Werpers <jonatan@werpers.com>
date Tue, 15 Mar 2022 21:42:52 +0100
parents b90446eb5f27
children 5bfc03cf3ba7
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test/SbpOperators/volumeops/derivatives/first_derivative_test.jl	Tue Mar 15 21:42:52 2022 +0100
@@ -0,0 +1,81 @@
+using Test
+
+
+using Sbplib.SbpOperators
+using Sbplib.Grids
+using Sbplib.LazyTensors
+
+using Sbplib.SbpOperators: closure_size, Stencil
+
+"""
+    monomial(x,k)
+
+Evaluates ``x^k/k!` with the convetion that it is ``0`` for all ``k<0``.
+Has the property that ``d/dx monomial(x,k) = monomial(x,k-1)``
+"""
+function monomial(x,k)
+    if k < 0
+        return zero(x)
+    end
+    x^k/factorial(k)
+end
+
+@testset "first_derivative" begin
+    @testset "Constructors" begin
+        stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+
+        g₁ = EquidistantGrid(11, 0., 1.)
+        g₂ = EquidistantGrid((11,14), (0.,1.), (1.,3.))
+
+        @test first_derivative(g₁, stencil_set, 1) isa TensorMapping{Float64,1,1}
+        @test first_derivative(g₂, stencil_set, 2) isa TensorMapping{Float64,2,2}
+
+        interior_stencil = CenteredStencil(-1,0,1)
+        closure_stencils = [Stencil(-1,1, center=1)]
+
+        @test first_derivative(g₁, interior_stencil, closure_stencils, 1) isa TensorMapping{Float64,1,1}
+        @test first_derivative(g₂, interior_stencil, closure_stencils, 2) isa TensorMapping{Float64,2,2}
+    end
+
+    @testset "Accuracy conditions" begin
+        N = 20
+        g = EquidistantGrid(N, 0//1,2//1)
+        @testset for order ∈ [2,4]
+            stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order)
+            D₁ = first_derivative(g, stencil_set, 1)
+
+            @testset "boundary x^$k" for k ∈ 0:order÷2
+                v = evalOn(g, x->monomial(x,k))
+
+                @testset for i ∈ 1:closure_size(D₁)
+                    x, = points(g)[i]
+                    @test (D₁*v)[i] == monomial(x,k-1)
+                end
+
+                @testset for i ∈ (N-closure_size(D₁)+1):N
+                    x, = points(g)[i]
+                    @test (D₁*v)[i] == monomial(x,k-1)
+                end
+            end
+
+            @testset "interior x^$k" for k ∈ 0:order
+                v = evalOn(g, x->monomial(x,k))
+
+                x, = points(g)[10]
+                @test (D₁*v)[10] == monomial(x,k-1)
+            end
+        end
+    end
+
+    @testset "Accuracy on function" begin
+        g = EquidistantGrid(30, 0.,1.)
+        v = evalOn(g, x->exp(x))
+        @testset for (order, tol) ∈ [(2, 6e-3),(4, 2e-4)]
+            stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order)
+            D₁ = first_derivative(g, stencil_set, 1)
+
+            @test D₁*v ≈ v rtol=tol
+        end
+    end
+end
+