diff src/LazyTensors/lazy_tensor_operations.jl @ 995:1ba8a398af9c refactor/lazy_tensors

Rename types
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 18 Mar 2022 21:14:47 +0100
parents 55ab7801c45f
children 20c376dffe84
line wrap: on
line diff
--- a/src/LazyTensors/lazy_tensor_operations.jl	Fri Mar 18 20:44:17 2022 +0100
+++ b/src/LazyTensors/lazy_tensor_operations.jl	Fri Mar 18 21:14:47 2022 +0100
@@ -1,19 +1,19 @@
 # TBD: Is there a good way to split this file?
 
 """
-    LazyTensorMappingApplication{T,R,D} <: LazyArray{T,R}
+    LazyTensorApplication{T,R,D} <: LazyArray{T,R}
 
-Struct for lazy application of a TensorMapping. Created using `*`.
+Struct for lazy application of a LazyTensor. Created using `*`.
 
-Allows the result of a `TensorMapping` applied to a vector to be treated as an `AbstractArray`.
-With a mapping `m` and a vector `v` the LazyTensorMappingApplication object can be created by `m*v`.
+Allows the result of a `LazyTensor` applied to a vector to be treated as an `AbstractArray`.
+With a mapping `m` and a vector `v` the LazyTensorApplication object can be created by `m*v`.
 The actual result will be calcualted when indexing into `m*v`.
 """
-struct LazyTensorMappingApplication{T,R,D, TM<:TensorMapping{<:Any,R,D}, AA<:AbstractArray{<:Any,D}} <: LazyArray{T,R}
+struct LazyTensorApplication{T,R,D, TM<:LazyTensor{<:Any,R,D}, AA<:AbstractArray{<:Any,D}} <: LazyArray{T,R}
     t::TM
     o::AA
 
-    function LazyTensorMappingApplication(t::TensorMapping{<:Any,R,D}, o::AbstractArray{<:Any,D}) where {R,D}
+    function LazyTensorApplication(t::LazyTensor{<:Any,R,D}, o::AbstractArray{<:Any,D}) where {R,D}
         I = ntuple(i->1, range_dim(t))
         T = typeof(apply(t,o,I...))
         return new{T,R,D,typeof(t), typeof(o)}(t,o)
@@ -21,103 +21,103 @@
 end
 # TODO: Do boundschecking on creation!
 
-Base.getindex(ta::LazyTensorMappingApplication{T,R}, I::Vararg{Any,R}) where {T,R} = apply(ta.t, ta.o, I...)
-Base.getindex(ta::LazyTensorMappingApplication{T,1}, I::CartesianIndex{1}) where {T} = apply(ta.t, ta.o, I.I...) # Would otherwise be caught in the previous method.
-Base.size(ta::LazyTensorMappingApplication) = range_size(ta.t)
+Base.getindex(ta::LazyTensorApplication{T,R}, I::Vararg{Any,R}) where {T,R} = apply(ta.t, ta.o, I...)
+Base.getindex(ta::LazyTensorApplication{T,1}, I::CartesianIndex{1}) where {T} = apply(ta.t, ta.o, I.I...) # Would otherwise be caught in the previous method.
+Base.size(ta::LazyTensorApplication) = range_size(ta.t)
 # TODO: What else is needed to implement the AbstractArray interface?
 
-Base.:*(a::TensorMapping, v::AbstractArray) = LazyTensorMappingApplication(a,v)
-Base.:*(a::TensorMapping, b::TensorMapping) = throw(MethodError(Base.:*,(a,b)))
-Base.:*(a::TensorMapping, args::Union{TensorMapping, AbstractArray}...) = foldr(*,(a,args...))
+Base.:*(a::LazyTensor, v::AbstractArray) = LazyTensorApplication(a,v)
+Base.:*(a::LazyTensor, b::LazyTensor) = throw(MethodError(Base.:*,(a,b)))
+Base.:*(a::LazyTensor, args::Union{LazyTensor, AbstractArray}...) = foldr(*,(a,args...))
 
 # # We need the associativity to be a→b→c = a→(b→c), which is the case for '→'
 # # Should we overload some other infix binary opesrator?
-# →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o)
+# →(tm::LazyTensor{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorApplication(tm,o)
 # TODO: We need to be really careful about good error messages.
-# For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)?
+# For example what happens if you try to multiply LazyTensorApplication with a LazyTensor(wrong order)?
 
 """
-    LazyTensorMappingTranspose{T,R,D} <: TensorMapping{T,D,R}
+    LazyTensorTranspose{T,R,D} <: LazyTensor{T,D,R}
 
-Struct for lazy transpose of a TensorMapping.
+Struct for lazy transpose of a LazyTensor.
 
 If a mapping implements the the `apply_transpose` method this allows working with
-the transpose of mapping `m` by using `m'`. `m'` will work as a regular TensorMapping lazily calling
+the transpose of mapping `m` by using `m'`. `m'` will work as a regular LazyTensor lazily calling
 the appropriate methods of `m`.
 """
-struct LazyTensorMappingTranspose{T,R,D, TM<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R}
+struct LazyTensorTranspose{T,R,D, TM<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R}
     tm::TM
 end
 
 # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors?
-# Jonatan 2020-09-25: Is the problem that you can take the transpose of any TensorMapping even if it doesn't implement `apply_transpose`?
-Base.adjoint(tm::TensorMapping) = LazyTensorMappingTranspose(tm)
-Base.adjoint(tmt::LazyTensorMappingTranspose) = tmt.tm
+# Jonatan 2020-09-25: Is the problem that you can take the transpose of any LazyTensor even if it doesn't implement `apply_transpose`?
+Base.adjoint(tm::LazyTensor) = LazyTensorTranspose(tm)
+Base.adjoint(tmt::LazyTensorTranspose) = tmt.tm
 
-apply(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...)
-apply_transpose(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmt.tm, v, I...)
+apply(tmt::LazyTensorTranspose{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D} = apply_transpose(tmt.tm, v, I...)
+apply_transpose(tmt::LazyTensorTranspose{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmt.tm, v, I...)
 
-range_size(tmt::LazyTensorMappingTranspose) = domain_size(tmt.tm)
-domain_size(tmt::LazyTensorMappingTranspose) = range_size(tmt.tm)
+range_size(tmt::LazyTensorTranspose) = domain_size(tmt.tm)
+domain_size(tmt::LazyTensorTranspose) = range_size(tmt.tm)
 
 
-struct LazyTensorMappingBinaryOperation{Op,T,R,D,T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R}
+struct LazyLazyTensorBinaryOperation{Op,T,R,D,T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}} <: LazyTensor{T,D,R}
     tm1::T1
     tm2::T2
 
-    @inline function LazyTensorMappingBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}}
+    @inline function LazyLazyTensorBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:LazyTensor{T,R,D},T2<:LazyTensor{T,R,D}}
         return new{Op,T,R,D,T1,T2}(tm1,tm2)
     end
 end
 # TODO: Boundschecking in constructor.
 
-apply(tmBinOp::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...)
-apply(tmBinOp::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...)
+apply(tmBinOp::LazyLazyTensorBinaryOperation{:+,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) + apply(tmBinOp.tm2, v, I...)
+apply(tmBinOp::LazyLazyTensorBinaryOperation{:-,T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D} = apply(tmBinOp.tm1, v, I...) - apply(tmBinOp.tm2, v, I...)
 
-range_size(tmBinOp::LazyTensorMappingBinaryOperation) = range_size(tmBinOp.tm1)
-domain_size(tmBinOp::LazyTensorMappingBinaryOperation) = domain_size(tmBinOp.tm1)
+range_size(tmBinOp::LazyLazyTensorBinaryOperation) = range_size(tmBinOp.tm1)
+domain_size(tmBinOp::LazyLazyTensorBinaryOperation) = domain_size(tmBinOp.tm1)
 
-Base.:+(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:+,T,R,D}(tm1,tm2)
-Base.:-(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:-,T,R,D}(tm1,tm2)
+Base.:+(tm1::LazyTensor{T,R,D}, tm2::LazyTensor{T,R,D}) where {T,R,D} = LazyLazyTensorBinaryOperation{:+,T,R,D}(tm1,tm2)
+Base.:-(tm1::LazyTensor{T,R,D}, tm2::LazyTensor{T,R,D}) where {T,R,D} = LazyLazyTensorBinaryOperation{:-,T,R,D}(tm1,tm2)
 
 """
-    TensorMappingComposition{T,R,K,D}
+    LazyTensorComposition{T,R,K,D}
 
-Lazily compose two `TensorMapping`s, so that they can be handled as a single `TensorMapping`.
+Lazily compose two `LazyTensor`s, so that they can be handled as a single `LazyTensor`.
 """
-struct TensorMappingComposition{T,R,K,D, TM1<:TensorMapping{T,R,K}, TM2<:TensorMapping{T,K,D}} <: TensorMapping{T,R,D}
+struct LazyTensorComposition{T,R,K,D, TM1<:LazyTensor{T,R,K}, TM2<:LazyTensor{T,K,D}} <: LazyTensor{T,R,D}
     t1::TM1
     t2::TM2
 
-    @inline function TensorMappingComposition(t1::TensorMapping{T,R,K}, t2::TensorMapping{T,K,D}) where {T,R,K,D}
+    @inline function LazyTensorComposition(t1::LazyTensor{T,R,K}, t2::LazyTensor{T,K,D}) where {T,R,K,D}
         @boundscheck check_domain_size(t1, range_size(t2))
         return new{T,R,K,D, typeof(t1), typeof(t2)}(t1,t2)
     end
 end
 
-range_size(tm::TensorMappingComposition) = range_size(tm.t1)
-domain_size(tm::TensorMappingComposition) = domain_size(tm.t2)
+range_size(tm::LazyTensorComposition) = range_size(tm.t1)
+domain_size(tm::LazyTensorComposition) = domain_size(tm.t2)
 
-function apply(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,K,D}
+function apply(c::LazyTensorComposition{T,R,K,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,K,D}
     apply(c.t1, c.t2*v, I...)
 end
 
-function apply_transpose(c::TensorMappingComposition{T,R,K,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,K,D}
+function apply_transpose(c::LazyTensorComposition{T,R,K,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,K,D}
     apply_transpose(c.t2, c.t1'*v, I...)
 end
 
-Base.@propagate_inbounds Base.:∘(s::TensorMapping, t::TensorMapping) = TensorMappingComposition(s,t)
+Base.@propagate_inbounds Base.:∘(s::LazyTensor, t::LazyTensor) = LazyTensorComposition(s,t)
 
 """
     LazyLinearMap{T,R,D,...}(A, range_indicies, domain_indicies)
 
-TensorMapping defined by the AbstractArray A. `range_indicies` and `domain_indicies` define which indicies of A should
-be considerd the range and domain of the TensorMapping. Each set of indices must be ordered in ascending order.
+LazyTensor defined by the AbstractArray A. `range_indicies` and `domain_indicies` define which indicies of A should
+be considerd the range and domain of the LazyTensor. Each set of indices must be ordered in ascending order.
 
 For instance, if A is a m x n matrix, and range_size = (1,), domain_size = (2,), then the LazyLinearMap performs the
 standard matrix-vector product on vectors of size n.
 """
-struct LazyLinearMap{T,R,D, RD, AA<:AbstractArray{T,RD}} <: TensorMapping{T,R,D}
+struct LazyLinearMap{T,R,D, RD, AA<:AbstractArray{T,RD}} <: LazyTensor{T,R,D}
     A::AA
     range_indicies::NTuple{R,Int}
     domain_indicies::NTuple{D,Int}
@@ -149,54 +149,54 @@
 
 
 """
-    IdentityMapping{T,D} <: TensorMapping{T,D,D}
+    IdentityTensor{T,D} <: LazyTensor{T,D,D}
 
-The lazy identity TensorMapping for a given size. Usefull for building up higher dimensional tensor mappings from lower
-dimensional ones through outer products. Also used in the Implementation for InflatedTensorMapping.
+The lazy identity LazyTensor for a given size. Usefull for building up higher dimensional tensor mappings from lower
+dimensional ones through outer products. Also used in the Implementation for InflatedLazyTensor.
 """
-struct IdentityMapping{T,D} <: TensorMapping{T,D,D}
+struct IdentityTensor{T,D} <: LazyTensor{T,D,D}
     size::NTuple{D,Int}
 end
 
-IdentityMapping{T}(size::NTuple{D,Int}) where {T,D} = IdentityMapping{T,D}(size)
-IdentityMapping{T}(size::Vararg{Int,D}) where {T,D} = IdentityMapping{T,D}(size)
-IdentityMapping(size::Vararg{Int,D}) where D = IdentityMapping{Float64,D}(size)
+IdentityTensor{T}(size::NTuple{D,Int}) where {T,D} = IdentityTensor{T,D}(size)
+IdentityTensor{T}(size::Vararg{Int,D}) where {T,D} = IdentityTensor{T,D}(size)
+IdentityTensor(size::Vararg{Int,D}) where D = IdentityTensor{Float64,D}(size)
 
-range_size(tmi::IdentityMapping) = tmi.size
-domain_size(tmi::IdentityMapping) = tmi.size
+range_size(tmi::IdentityTensor) = tmi.size
+domain_size(tmi::IdentityTensor) = tmi.size
 
-apply(tmi::IdentityMapping{T,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,D}) where {T,D} = v[I...]
-apply_transpose(tmi::IdentityMapping{T,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,D}) where {T,D} = v[I...]
+apply(tmi::IdentityTensor{T,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,D}) where {T,D} = v[I...]
+apply_transpose(tmi::IdentityTensor{T,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,D}) where {T,D} = v[I...]
 
 """
     Base.:∘(tm, tmi)
     Base.:∘(tmi, tm)
 
-Composes a `Tensormapping` `tm` with an `IdentityMapping` `tmi`, by returning `tm`
+Composes a `Tensormapping` `tm` with an `IdentityTensor` `tmi`, by returning `tm`
 """
-@inline function Base.:∘(tm::TensorMapping{T,R,D}, tmi::IdentityMapping{T,D}) where {T,R,D}
+@inline function Base.:∘(tm::LazyTensor{T,R,D}, tmi::IdentityTensor{T,D}) where {T,R,D}
     @boundscheck check_domain_size(tm, range_size(tmi))
     return tm
 end
 
-@inline function Base.:∘(tmi::IdentityMapping{T,R}, tm::TensorMapping{T,R,D}) where {T,R,D}
+@inline function Base.:∘(tmi::IdentityTensor{T,R}, tm::LazyTensor{T,R,D}) where {T,R,D}
     @boundscheck check_domain_size(tmi, range_size(tm))
     return tm
 end
-# Specialization for the case where tm is an IdentityMapping. Required to resolve ambiguity.
-@inline function Base.:∘(tm::IdentityMapping{T,D}, tmi::IdentityMapping{T,D}) where {T,D}
+# Specialization for the case where tm is an IdentityTensor. Required to resolve ambiguity.
+@inline function Base.:∘(tm::IdentityTensor{T,D}, tmi::IdentityTensor{T,D}) where {T,D}
     @boundscheck check_domain_size(tm, range_size(tmi))
     return tmi
 end
-# TODO: Implement the above as TensorMappingComposition instead
+# TODO: Implement the above as LazyTensorComposition instead
 # TODO: Move the operator definitions to one place
 
 """
-    ScalingTensor{T,D} <: TensorMapping{T,D,D}
+    ScalingTensor{T,D} <: LazyTensor{T,D,D}
 
 A lazy tensor that scales its input with `λ`.
 """
-struct ScalingTensor{T,D} <: TensorMapping{T,D,D}
+struct ScalingTensor{T,D} <: LazyTensor{T,D,D}
     λ::T
     size::NTuple{D,Int}
 end
@@ -211,16 +211,16 @@
 # TODO: Remove ScalingOperator from tests
 
 """
-    InflatedTensorMapping{T,R,D} <: TensorMapping{T,R,D}
+    InflatedLazyTensor{T,R,D} <: LazyTensor{T,R,D}
 
-An inflated `TensorMapping` with dimensions added before and afer its actual dimensions.
+An inflated `LazyTensor` with dimensions added before and afer its actual dimensions.
 """
-struct InflatedTensorMapping{T,R,D,D_before,R_middle,D_middle,D_after, TM<:TensorMapping{T,R_middle,D_middle}} <: TensorMapping{T,R,D}
-    before::IdentityMapping{T,D_before}
+struct InflatedLazyTensor{T,R,D,D_before,R_middle,D_middle,D_after, TM<:LazyTensor{T,R_middle,D_middle}} <: LazyTensor{T,R,D}
+    before::IdentityTensor{T,D_before}
     tm::TM
-    after::IdentityMapping{T,D_after}
+    after::IdentityTensor{T,D_after}
 
-    function InflatedTensorMapping(before, tm::TensorMapping{T}, after) where T
+    function InflatedLazyTensor(before, tm::LazyTensor{T}, after) where T
         R_before = range_dim(before)
         R_middle = range_dim(tm)
         R_after = range_dim(after)
@@ -234,35 +234,35 @@
     end
 end
 """
-    InflatedTensorMapping(before, tm, after)
-    InflatedTensorMapping(before,tm)
-    InflatedTensorMapping(tm,after)
+    InflatedLazyTensor(before, tm, after)
+    InflatedLazyTensor(before,tm)
+    InflatedLazyTensor(tm,after)
 
-The outer product of `before`, `tm` and `after`, where `before` and `after` are `IdentityMapping`s.
+The outer product of `before`, `tm` and `after`, where `before` and `after` are `IdentityTensor`s.
 
-If one of `before` or `after` is left out, a 0-dimensional `IdentityMapping` is used as the default value.
+If one of `before` or `after` is left out, a 0-dimensional `IdentityTensor` is used as the default value.
 
-If `tm` already is an `InflatedTensorMapping`, `before` and `after` will be extended instead of
-creating a nested `InflatedTensorMapping`.
+If `tm` already is an `InflatedLazyTensor`, `before` and `after` will be extended instead of
+creating a nested `InflatedLazyTensor`.
 """
-InflatedTensorMapping(::IdentityMapping, ::TensorMapping, ::IdentityMapping)
+InflatedLazyTensor(::IdentityTensor, ::LazyTensor, ::IdentityTensor)
 
-function InflatedTensorMapping(before, itm::InflatedTensorMapping, after)
-    return InflatedTensorMapping(
-        IdentityMapping(before.size...,  itm.before.size...),
+function InflatedLazyTensor(before, itm::InflatedLazyTensor, after)
+    return InflatedLazyTensor(
+        IdentityTensor(before.size...,  itm.before.size...),
         itm.tm,
-        IdentityMapping(itm.after.size..., after.size...),
+        IdentityTensor(itm.after.size..., after.size...),
     )
 end
 
-InflatedTensorMapping(before::IdentityMapping, tm::TensorMapping{T}) where T = InflatedTensorMapping(before,tm,IdentityMapping{T}())
-InflatedTensorMapping(tm::TensorMapping{T}, after::IdentityMapping) where T = InflatedTensorMapping(IdentityMapping{T}(),tm,after)
+InflatedLazyTensor(before::IdentityTensor, tm::LazyTensor{T}) where T = InflatedLazyTensor(before,tm,IdentityTensor{T}())
+InflatedLazyTensor(tm::LazyTensor{T}, after::IdentityTensor) where T = InflatedLazyTensor(IdentityTensor{T}(),tm,after)
 # Resolve ambiguity between the two previous methods
-InflatedTensorMapping(I1::IdentityMapping{T}, I2::IdentityMapping{T}) where T = InflatedTensorMapping(I1,I2,IdentityMapping{T}())
+InflatedLazyTensor(I1::IdentityTensor{T}, I2::IdentityTensor{T}) where T = InflatedLazyTensor(I1,I2,IdentityTensor{T}())
 
-# TODO: Implement some pretty printing in terms of ⊗. E.g InflatedTensorMapping(I(3),B,I(2)) -> I(3)⊗B⊗I(2)
+# TODO: Implement some pretty printing in terms of ⊗. E.g InflatedLazyTensor(I(3),B,I(2)) -> I(3)⊗B⊗I(2)
 
-function range_size(itm::InflatedTensorMapping)
+function range_size(itm::InflatedLazyTensor)
     return flatten_tuple(
         range_size(itm.before),
         range_size(itm.tm),
@@ -270,7 +270,7 @@
     )
 end
 
-function domain_size(itm::InflatedTensorMapping)
+function domain_size(itm::InflatedLazyTensor)
     return flatten_tuple(
         domain_size(itm.before),
         domain_size(itm.tm),
@@ -278,7 +278,7 @@
     )
 end
 
-function apply(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D}
+function apply(itm::InflatedLazyTensor{T,R,D}, v::AbstractArray{<:Any,D}, I::Vararg{Any,R}) where {T,R,D}
     dim_before = range_dim(itm.before)
     dim_domain = domain_dim(itm.tm)
     dim_range = range_dim(itm.tm)
@@ -290,7 +290,7 @@
     return apply(itm.tm, v_inner, inner_index...)
 end
 
-function apply_transpose(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D}
+function apply_transpose(itm::InflatedLazyTensor{T,R,D}, v::AbstractArray{<:Any,R}, I::Vararg{Any,D}) where {T,R,D}
     dim_before = range_dim(itm.before)
     dim_domain = domain_dim(itm.tm)
     dim_range = range_dim(itm.tm)
@@ -383,7 +383,7 @@
 @doc raw"""
     LazyOuterProduct(tms...)
 
-Creates a `TensorMappingComposition` for the outerproduct of `tms...`.
+Creates a `LazyTensorComposition` for the outerproduct of `tms...`.
 This is done by separating the outer product into regular products of outer products involving only identity mappings and one non-identity mapping.
 
 First let
@@ -419,34 +419,34 @@
 """
 function LazyOuterProduct end
 
-function LazyOuterProduct(tm1::TensorMapping{T}, tm2::TensorMapping{T}) where T
-    itm1 = InflatedTensorMapping(tm1, IdentityMapping{T}(range_size(tm2)))
-    itm2 = InflatedTensorMapping(IdentityMapping{T}(domain_size(tm1)),tm2)
+function LazyOuterProduct(tm1::LazyTensor{T}, tm2::LazyTensor{T}) where T
+    itm1 = InflatedLazyTensor(tm1, IdentityTensor{T}(range_size(tm2)))
+    itm2 = InflatedLazyTensor(IdentityTensor{T}(domain_size(tm1)),tm2)
 
     return itm1∘itm2
 end
 
-LazyOuterProduct(t1::IdentityMapping{T}, t2::IdentityMapping{T}) where T = IdentityMapping{T}(t1.size...,t2.size...)
-LazyOuterProduct(t1::TensorMapping, t2::IdentityMapping) = InflatedTensorMapping(t1, t2)
-LazyOuterProduct(t1::IdentityMapping, t2::TensorMapping) = InflatedTensorMapping(t1, t2)
+LazyOuterProduct(t1::IdentityTensor{T}, t2::IdentityTensor{T}) where T = IdentityTensor{T}(t1.size...,t2.size...)
+LazyOuterProduct(t1::LazyTensor, t2::IdentityTensor) = InflatedLazyTensor(t1, t2)
+LazyOuterProduct(t1::IdentityTensor, t2::LazyTensor) = InflatedLazyTensor(t1, t2)
 
-LazyOuterProduct(tms::Vararg{TensorMapping}) = foldl(LazyOuterProduct, tms)
+LazyOuterProduct(tms::Vararg{LazyTensor}) = foldl(LazyOuterProduct, tms)
 
-⊗(a::TensorMapping, b::TensorMapping) = LazyOuterProduct(a,b)
+⊗(a::LazyTensor, b::LazyTensor) = LazyOuterProduct(a,b)
 
 
-function check_domain_size(tm::TensorMapping, sz)
+function check_domain_size(tm::LazyTensor, sz)
     if domain_size(tm) != sz
         throw(SizeMismatch(tm,sz))
     end
 end
 
 struct SizeMismatch <: Exception
-    tm::TensorMapping
+    tm::LazyTensor
     sz
 end
 
 function Base.showerror(io::IO, err::SizeMismatch)
     print(io, "SizeMismatch: ")
-    print(io, "domain size $(domain_size(err.tm)) of TensorMapping not matching size $(err.sz)")
+    print(io, "domain size $(domain_size(err.tm)) of LazyTensor not matching size $(err.sz)")
 end