Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/operators/standard_diagonal.toml @ 866:1784b1c0af3e feature/laplace_opset
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 19 Jan 2022 14:44:24 +0100 |
parents | fe8fe3f01162 |
children | 61f5850ca456 35be8253de89 |
line wrap: on
line diff
--- a/src/SbpOperators/operators/standard_diagonal.toml Fri Jul 02 14:23:33 2021 +0200 +++ b/src/SbpOperators/operators/standard_diagonal.toml Wed Jan 19 14:44:24 2022 +0100 @@ -1,36 +1,60 @@ [meta] authors = "Ken Mattson" -descripion = "Standard operators for equidistant grids" +description = "Standard operators for equidistant grids" type = "equidistant" +cite = """ + Ken Mattsson, Jan Nordström, + Summation by parts operators for finite difference approximations of second derivatives, + Journal of Computational Physics, + Volume 199, Issue 2, + 2004, + Pages 503-540, + ISSN 0021-9991, + https://doi.org/10.1016/j.jcp.2004.03.001. +""" -[order2] -H.inner = ["1"] +[[stencil_set]] + +order = 2 + +H.inner = "1" H.closure = ["1/2"] D1.inner_stencil = ["-1/2", "0", "1/2"] D1.closure_stencils = [ - ["-1", "1"], + {s = ["-1", "1"], c = 1}, ] D2.inner_stencil = ["1", "-2", "1"] D2.closure_stencils = [ - ["1", "-2", "1"], + {s = ["1", "-2", "1"], c = 1}, ] e.closure = ["1"] -d1.closure = ["-3/2", "2", "-1/2"] +d1.closure = {s = ["-3/2", "2", "-1/2"], c = 1} + +[[stencil_set]] + +order = 4 -[order4] -H.inner = ["1"] +H.inner = "1" H.closure = ["17/48", "59/48", "43/48", "49/48"] +D1.inner_stencil = ["1/12","-2/3","0","2/3","-1/12"] +D1.closure_stencils = [ + {s = [ "-24/17", "59/34", "-4/17", "-3/34", "0", "0"], c = 1}, + {s = [ "-1/2", "0", "1/2", "0", "0", "0"], c = 2}, + {s = [ "4/43", "-59/86", "0", "59/86", "-4/43", "0"], c = 3}, + {s = [ "3/98", "0", "-59/98", "0", "32/49", "-4/49"], c = 4}, +] + D2.inner_stencil = ["-1/12","4/3","-5/2","4/3","-1/12"] D2.closure_stencils = [ - [ "2", "-5", "4", "-1", "0", "0"], - [ "1", "-2", "1", "0", "0", "0"], - [ "-4/43", "59/43", "-110/43", "59/43", "-4/43", "0"], - [ "-1/49", "0", "59/49", "-118/49", "64/49", "-4/49"], + {s = [ "2", "-5", "4", "-1", "0", "0"], c = 1}, + {s = [ "1", "-2", "1", "0", "0", "0"], c = 2}, + {s = [ "-4/43", "59/43", "-110/43", "59/43", "-4/43", "0"], c = 3}, + {s = [ "-1/49", "0", "59/49", "-118/49", "64/49", "-4/49"], c = 4}, ] e.closure = ["1"] -d1.closure = ["-11/6", "3", "-3/2", "1/3"] +d1.closure = {s = ["-11/6", "3", "-3/2", "1/3"], c = 1}