Mercurial > repos > public > sbplib_julia
diff LazyTensors/src/lazy_tensor_operations.jl @ 274:11010bb74260 boundary_conditions
Dispatch getindex for TensorMappingApplication on region indices. Dispatch apply
for TensorMappingBinaryOperation on region indices. Update tests. Update todo
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 06 Jan 2020 10:54:48 +0100 |
parents | 634453a4e1d8 |
children | 591609cdcd9b |
line wrap: on
line diff
--- a/LazyTensors/src/lazy_tensor_operations.jl Mon Jan 06 10:48:38 2020 +0100 +++ b/LazyTensors/src/lazy_tensor_operations.jl Mon Jan 06 10:54:48 2020 +0100 @@ -14,14 +14,14 @@ export LazyTensorMappingApplication Base.:*(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) - -Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg{Int,R}) where {T,R,D} = apply(ta.t, ta.o, I) +Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg{Index{<:Region},R}) where {T,R,D} = apply(ta.t, ta.o, I) +Base.getindex(ta::LazyTensorMappingApplication{T,R,D}, I::Vararg{Int,R}) where {T,R,D} = apply(ta.t, ta.o, Index{Unknown}.(I)) Base.size(ta::LazyTensorMappingApplication{T,R,D}) where {T,R,D} = range_size(ta.t,size(ta.o)) # TODO: What else is needed to implement the AbstractArray interface? # # We need the associativity to be a→b→c = a→(b→c), which is the case for '→' Base.:*(a::TensorMapping{T,R,D}, b::TensorMapping{T,D,K}, args::Union{TensorMapping{T}, AbstractArray{T}}...) where {T,R,D,K} = foldr(*,(a,b,args...)) -# # Should we overload some other infix binary operator? +# # Should we overload some other infix binary opesrator? # →(tm::TensorMapping{T,R,D}, o::AbstractArray{T,D}) where {T,R,D} = LazyTensorMappingApplication(tm,o) # TODO: We need to be really careful about good error messages. # For example what happens if you try to multiply LazyTensorMappingApplication with a TensorMapping(wrong order)? @@ -41,11 +41,11 @@ export LazyTensorMappingTranspose # # TBD: Should this be implemented on a type by type basis or through a trait to provide earlier errors? -Base.adjoint(t::TensorMapping) = LazyTensorMappingTranspose(t) -Base.adjoint(t::LazyTensorMappingTranspose) = t.tm +Base.adjoint(tm::TensorMapping) = LazyTensorMappingTranspose(tm) +Base.adjoint(tmt::LazyTensorMappingTranspose) = tmt.tm -apply(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::NTuple{D,Int}) where {T,R,D} = apply_transpose(tm.tm, v, I) -apply_transpose(tm::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::NTuple{R,Int}) where {T,R,D} = apply(tm.tm, v, I) +apply(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,R}, I::NTuple{D,Int}) where {T,R,D} = apply_transpose(tmt.tm, v, I) +apply_transpose(tmt::LazyTensorMappingTranspose{T,R,D}, v::AbstractArray{T,D}, I::NTuple{R,Int}) where {T,R,D} = apply(tmt.tm, v, I) range_size(tmt::LazyTensorMappingTranspose{T,R,D}, d_size::NTuple{R,Integer}) where {T,R,D} = domain_size(tmt.tm, d_size) domain_size(tmt::LazyTensorMappingTranspose{T,R,D}, r_size::NTuple{D,Integer}) where {T,R,D} = range_size(tmt.tm, r_size) @@ -54,22 +54,22 @@ struct LazyTensorMappingBinaryOperation{Op,T,R,D,T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} <: TensorMapping{T,D,R} - A::T1 - B::T2 + tm1::T1 + tm2::T2 - @inline function LazyTensorMappingBinaryOperation{Op,T,R,D}(A::T1,B::T2) where {Op,T,R,D, T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} - return new{Op,T,R,D,T1,T2}(A,B) + @inline function LazyTensorMappingBinaryOperation{Op,T,R,D}(tm1::T1,tm2::T2) where {Op,T,R,D, T1<:TensorMapping{T,R,D},T2<:TensorMapping{T,R,D}} + return new{Op,T,R,D,T1,T2}(tm1,tm2) end end -apply(mb::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{T,D}, I::NTuple{R,Int}) where {T,R,D} = apply(mb.A, v, I...) + apply(mb.B,v,I...) -apply(mb::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{T,D}, I::NTuple{R,Int}) where {T,R,D} = apply(mb.A, v, I...) - apply(mb.B,v,I...) +apply(tmBinOp::LazyTensorMappingBinaryOperation{:+,T,R,D}, v::AbstractArray{T,D}, I::NTuple{R,Index{<:Region}}) where {T,R,D} = apply(tmBinOp.tm1, v, I) + apply(tmBinOp.tm2, v, I) +apply(tmBinOp::LazyTensorMappingBinaryOperation{:-,T,R,D}, v::AbstractArray{T,D}, I::NTuple{R,Index{<:Region}}) where {T,R,D} = apply(tmBinOp.tm1, v, I) - apply(tmBinOp.tm2, v, I) -range_size(mp::LazyTensorMappingBinaryOperation{Op,T,R,D}, domain_size::NTuple{D,Integer}) where {Op,T,R,D} = range_size(mp.A, domain_size) -domain_size(mp::LazyTensorMappingBinaryOperation{Op,T,R,D}, range_size::NTuple{R,Integer}) where {Op,T,R,D} = domain_size(mp.A, range_size) +range_size(tmBinOp::LazyTensorMappingBinaryOperation{Op,T,R,D}, domain_size::NTuple{D,Integer}) where {Op,T,R,D} = range_size(tmBinOp.tm1, domain_size) +domain_size(tmBinOp::LazyTensorMappingBinaryOperation{Op,T,R,D}, range_size::NTuple{R,Integer}) where {Op,T,R,D} = domain_size(tmBinOp.tm2, range_size) -Base.:+(A::TensorMapping{T,R,D}, B::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:+,T,R,D}(A,B) -Base.:-(A::TensorMapping{T,R,D}, B::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:-,T,R,D}(A,B) +Base.:+(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:+,T,R,D}(tm1,tm2) +Base.:-(tm1::TensorMapping{T,R,D}, tm2::TensorMapping{T,R,D}) where {T,R,D} = LazyTensorMappingBinaryOperation{:-,T,R,D}(tm1,tm2) # TODO: Write tests and documentation for LazyTensorMappingComposition