Mercurial > repos > public > sbplib_julia
diff DiffOps/src/laplace.jl @ 291:0f94dc29c4bf
Merge in branch boundary_conditions
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 22 Jun 2020 21:43:05 +0200 |
parents | 7247e85dc1e8 |
children |
line wrap: on
line diff
--- a/DiffOps/src/laplace.jl Wed Jun 26 15:07:47 2019 +0200 +++ b/DiffOps/src/laplace.jl Mon Jun 22 21:43:05 2020 +0200 @@ -1,111 +1,205 @@ -struct NormalDerivative{N,M,K} - op::D2{Float64,N,M,K} - grid::EquidistantGrid - bId::CartesianBoundary -end - -function apply_transpose(d::NormalDerivative, v::AbstractArray, I::Integer) - u = selectdim(v,3-dim(d.bId),I) - return apply_d(d.op, d.grid.inverse_spacing[dim(d.bId)], u, region(d.bId)) -end - -# Not correct abstraction level -# TODO: Not type stable D:< -function apply(d::NormalDerivative, v::AbstractArray, I::Tuple{Integer,Integer}) - i = I[dim(d.bId)] - j = I[3-dim(d.bId)] - N_i = d.grid.size[dim(d.bId)] - - r = getregion(i, closureSize(d.op), N_i) - - if r != region(d.bId) - return 0 - end - - if r == Lower - # Note, closures are indexed by offset. Fix this D:< - return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[i-1]*v[j] - elseif r == Upper - return d.grid.inverse_spacing[dim(d.bId)]*d.op.dClosure[N_i-j]*v[j] - end -end +#TODO: move to sbpoperators.jl +""" + Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} -struct BoundaryValue{N,M,K} - op::D2{Float64,N,M,K} - grid::EquidistantGrid - bId::CartesianBoundary +Implements the Laplace operator `L` in Dim dimensions as a tensor operator +The multi-dimensional tensor operator simply consists of a tuple of the 1D +Laplace tensor operator as defined by ConstantLaplaceOperator. +""" +struct Laplace{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} + tensorOps::NTuple(Dim,ConstantLaplaceOperator{T,N,M,K}) + #TODO: Write a good constructor end - -function apply(e::BoundaryValue, v::AbstractArray, I::Tuple{Integer,Integer}) - i = I[dim(e.bId)] - j = I[3-dim(e.bId)] - N_i = e.grid.size[dim(e.bId)] - - r = getregion(i, closureSize(e.op), N_i) - - if r != region(e.bId) - return 0 - end +export Laplace - if r == Lower - # Note, closures are indexed by offset. Fix this D:< - return e.op.eClosure[i-1]*v[j] - elseif r == Upper - return e.op.eClosure[N_i-j]*v[j] - end -end +LazyTensors.domain_size(H::Laplace{Dim}, range_size::NTuple{Dim,Integer}) = range_size -function apply_transpose(e::BoundaryValue, v::AbstractArray, I::Integer) - u = selectdim(v,3-dim(e.bId),I) - return apply_e(e.op, u, region(e.bId)) -end - -struct Laplace{Dim,T<:Real,N,M,K} <: DiffOpCartesian{Dim} - grid::EquidistantGrid{Dim,T} - a::T - op::D2{Float64,N,M,K} - # e::BoundaryValue - # d::NormalDerivative -end - -function apply(L::Laplace{Dim}, v::AbstractArray{T,Dim} where T, I::CartesianIndex{Dim}) where Dim +function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} error("not implemented") end # u = L*v -function apply(L::Laplace{1}, v::AbstractVector, i::Int) - uᵢ = L.a * SbpOperators.apply(L.op, L.grid.spacing[1], v, i) +function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T + return apply(L.tensorOps[1],v,I) +end + + +@inline function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + # 2nd x-derivative + @inbounds vx = view(v, :, Int(I[2])) + @inbounds uᵢ = apply(L.tensorOps[1], vx , (I[1],)) #Tuple conversion here is ugly. How to do it? Should we use indexing here? + + # 2nd y-derivative + @inbounds vy = view(v, Int(I[1]), :) + @inbounds uᵢ += apply(L.tensorOps[2], vy , (I[2],)) #Tuple conversion here is ugly. How to do it? + return uᵢ end -@inline function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, I::Tuple{Index{R1}, Index{R2}}) where {R1, R2} - # 2nd x-derivative - @inbounds vx = view(v, :, Int(I[2])) - @inbounds uᵢ = L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[1], vx , I[1]) - # 2nd y-derivative - @inbounds vy = view(v, Int(I[1]), :) - @inbounds uᵢ += L.a*SbpOperators.apply(L.op, L.grid.inverse_spacing[2], vy, I[2]) - # NOTE: the package qualifier 'SbpOperators' can problably be removed once all "applying" objects use LazyTensors - return uᵢ +quadrature(L::Laplace) = Quadrature(L.op, L.grid) +inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) +boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) +normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) +boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) +export quadrature + +# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `H` of Dim dimension as a TensorMapping +""" +struct Quadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} + op::D2{T,N,M,K} + grid::EquidistantGrid{Dim,T} +end +export Quadrature + +LazyTensors.domain_size(H::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +@inline function LazyTensors.apply(H::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + N = size(H.grid) + # Quadrature in x direction + @inbounds q = apply_quadrature(H.op, spacing(H.grid)[1], v[I] , I[1], N[1]) + # Quadrature in y-direction + @inbounds q = apply_quadrature(H.op, spacing(H.grid)[2], q, I[2], N[2]) + return q +end + +LazyTensors.apply_transpose(H::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I) + + +""" + InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the inverse quadrature operator `inv(H)` of Dim dimension as a TensorMapping +""" +struct InverseQuadrature{Dim,T<:Real,N,M,K} <: TensorOperator{T,Dim} + op::D2{T,N,M,K} + grid::EquidistantGrid{Dim,T} +end +export InverseQuadrature + +LazyTensors.domain_size(H_inv::InverseQuadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +@inline function LazyTensors.apply(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T + N = size(H_inv.grid) + # Inverse quadrature in x direction + @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[1], v[I] , I[1], N[1]) + # Inverse quadrature in y-direction + @inbounds q_inv = apply_inverse_quadrature(H_inv.op, inverse_spacing(H_inv.grid)[2], q_inv, I[2], N[2]) + return q_inv end -# Slow but maybe convenient? -function apply(L::Laplace{2}, v::AbstractArray{T,2} where T, i::CartesianIndex{2}) - I = Index{Unknown}.(Tuple(i)) - apply(L, v, I) +LazyTensors.apply_transpose(H_inv::InverseQuadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H_inv,v,I) + +""" + BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} + +Implements the boundary operator `e` as a TensorMapping +""" +struct BoundaryValue{T,N,M,K} <: TensorMapping{T,2,1} + op::D2{T,N,M,K} + grid::EquidistantGrid{2} + bId::CartesianBoundary +end +export BoundaryValue + +# TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? +# Can we give special treatment to TensorMappings that go to a higher dim? +function LazyTensors.range_size(e::BoundaryValue{T}, domain_size::NTuple{1,Integer}) where T + if dim(e.bId) == 1 + return (UnknownDim, domain_size[1]) + elseif dim(e.bId) == 2 + return (domain_size[1], UnknownDim) + end +end +LazyTensors.domain_size(e::BoundaryValue{T}, range_size::NTuple{2,Integer}) where T = (range_size[3-dim(e.bId)],) +# TODO: Make a nicer solution for 3-dim(e.bId) + +# TODO: Make this independent of dimension +function LazyTensors.apply(e::BoundaryValue{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T + i = I[dim(e.bId)] + j = I[3-dim(e.bId)] + N_i = size(e.grid)[dim(e.bId)] + return apply_boundary_value(e.op, v[j], i, N_i, region(e.bId)) +end + +function LazyTensors.apply_transpose(e::BoundaryValue{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T + u = selectdim(v,3-dim(e.bId),Int(I[1])) + return apply_boundary_value_transpose(e.op, u, region(e.bId)) +end + +""" + NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} + +Implements the boundary operator `d` as a TensorMapping +""" +struct NormalDerivative{T,N,M,K} <: TensorMapping{T,2,1} + op::D2{T,N,M,K} + grid::EquidistantGrid{2} + bId::CartesianBoundary end +export NormalDerivative + +# TODO: This is obviouly strange. Is domain_size just discarded? Is there a way to avoid storing grid in BoundaryValue? +# Can we give special treatment to TensorMappings that go to a higher dim? +function LazyTensors.range_size(e::NormalDerivative, domain_size::NTuple{1,Integer}) + if dim(e.bId) == 1 + return (UnknownDim, domain_size[1]) + elseif dim(e.bId) == 2 + return (domain_size[1], UnknownDim) + end +end +LazyTensors.domain_size(e::NormalDerivative, range_size::NTuple{2,Integer}) = (range_size[3-dim(e.bId)],) + +# TODO: Not type stable D:< +# TODO: Make this independent of dimension +function LazyTensors.apply(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{2,Index}) where T + i = I[dim(d.bId)] + j = I[3-dim(d.bId)] + N_i = size(d.grid)[dim(d.bId)] + h_inv = inverse_spacing(d.grid)[dim(d.bId)] + return apply_normal_derivative(d.op, h_inv, v[j], i, N_i, region(d.bId)) +end + +function LazyTensors.apply_transpose(d::NormalDerivative{T}, v::AbstractArray{T}, I::NTuple{1,Index}) where T + u = selectdim(v,3-dim(d.bId),Int(I[1])) + return apply_normal_derivative_transpose(d.op, inverse_spacing(d.grid)[dim(d.bId)], u, region(d.bId)) +end + +""" + BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} + +Implements the boundary operator `q` as a TensorOperator +""" +struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} + op::D2{T,N,M,K} + grid::EquidistantGrid{2} + bId::CartesianBoundary +end +export BoundaryQuadrature + +# TODO: Make this independent of dimension +function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T + h = spacing(q.grid)[3-dim(q.bId)] + N = size(v) + return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) +end + +LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I) + + struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} - e = BoundaryValue(L.op, L.grid, Bid()) - d = NormalDerivative(L.op, L.grid, Bid()) - Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid()) - # TODO: Implement BoundaryQuadrature method - - return -L.Hi*e*Hᵧ*(d'*v - g) - # Need to handle d'*v - g so that it is an AbstractArray that TensorMappings can act on + e = boundary_value(L, Bid()) + d = normal_derivative(L, Bid()) + Hᵧ = boundary_quadrature(L, Bid()) + H⁻¹ = inverse_quadrature(L) + return (-H⁻¹*e*Hᵧ*(d'*v - g))[I] end struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition @@ -113,17 +207,16 @@ end function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} - e = BoundaryValue(L.op, L.grid, Bid()) - d = NormalDerivative(L.op, L.grid, Bid()) - Hᵧ = BoundaryQuadrature(L.op, L.grid, Bid()) - # TODO: Implement BoundaryQuadrature method - - return -L.Hi*(tau/h*e + d)*Hᵧ*(e'*v - g) + e = boundary_value(L, Bid()) + d = normal_derivative(L, Bid()) + Hᵧ = boundary_quadrature(L, Bid()) + H⁻¹ = inverse_quadrature(L) + return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I] # Need to handle scalar multiplication and addition of TensorMapping end # function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D -# return apply(s.L, v, i) + + # return apply(s.L, v, i) + # sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + # sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + # sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) +