diff test/testSbpOperators.jl @ 638:08b2c7a2d063 feature/volume_and_boundary_operators

Implement the Quadrature operator as a VolumeOperator. Make DiagonalQuadrature a special case of the general Quadrature operator. Update tests.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Mon, 04 Jan 2021 09:32:11 +0100
parents fb5ac62563aa
children 5e50e9815732
line wrap: on
line diff
--- a/test/testSbpOperators.jl	Sun Jan 03 18:15:14 2021 +0100
+++ b/test/testSbpOperators.jl	Mon Jan 04 09:32:11 2021 +0100
@@ -413,47 +413,51 @@
     g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
     integral(H,v) = sum(H*v)
     @testset "Constructors" begin
-        # 1D
-        H_x = DiagonalQuadrature(spacing(g_1D)[1],op.quadratureClosure,size(g_1D));
-        @test H_x == DiagonalQuadrature(g_1D,op.quadratureClosure)
-        @test H_x == diagonal_quadrature(g_1D,op.quadratureClosure)
-        @test H_x isa TensorMapping{T,1,1} where T
-        @test H_x' isa TensorMapping{T,1,1} where T
-        # 2D
-        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
-        @test H_xy isa TensorMappingComposition
-        @test H_xy isa TensorMapping{T,2,2} where T
-        @test H_xy' isa TensorMapping{T,2,2} where T
+        @testset "1D" begin
+            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            inner_stencil = Stencil((spacing(g_1D)[1],),center=1)
+            H == Quadrature(g_1D,inner_stencil,op.quadratureClosure)
+            @test H isa TensorMapping{T,1,1} where T
+        end
+        @testset "1D" begin
+            H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+            H_x = DiagonalQuadrature(restrict(g_2D,1),op.quadratureClosure)
+            H_y = DiagonalQuadrature(restrict(g_2D,2),op.quadratureClosure)
+            @test H == H_x⊗H_y
+            @test H isa TensorMapping{T,2,2} where T
+        end
     end
 
     @testset "Sizes" begin
-        # 1D
-        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
-        @test domain_size(H_x) == size(g_1D)
-        @test range_size(H_x) == size(g_1D)
-        # 2D
-        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
-        @test domain_size(H_xy) == size(g_2D)
-        @test range_size(H_xy) == size(g_2D)
+        @testset "1D" begin
+            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            @test domain_size(H) == size(g_1D)
+            @test range_size(H) == size(g_1D)
+        end
+        @testset "2D" begin
+            H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+            @test domain_size(H) == size(g_2D)
+            @test range_size(H) == size(g_2D)
+        end
     end
 
     @testset "Application" begin
-        # 1D
-        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
-        a = 3.2
-        v_1D = a*ones(Float64, size(g_1D))
-        u_1D = evalOn(g_1D,x->sin(x))
-        @test integral(H_x,v_1D) ≈ a*Lx rtol = 1e-13
-        @test integral(H_x,u_1D) ≈ 1. rtol = 1e-8
-        @test H_x*v_1D == H_x'*v_1D
-        # 2D
-        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
-        b = 2.1
-        v_2D = b*ones(Float64, size(g_2D))
-        u_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y))
-        @test integral(H_xy,v_2D) ≈ b*Lx*Ly rtol = 1e-13
-        @test integral(H_xy,u_2D) ≈ π rtol = 1e-8
-        @test H_xy*v_2D ≈ H_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason?
+        @testset "1D" begin
+            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            a = 3.2
+            v_1D = a*ones(Float64, size(g_1D))
+            u_1D = evalOn(g_1D,x->sin(x))
+            @test integral(H,v_1D) ≈ a*Lx rtol = 1e-13
+            @test integral(H,u_1D) ≈ 1. rtol = 1e-8
+        end
+        @testset "1D" begin
+            H = DiagonalQuadrature(g_2D,op.quadratureClosure)
+            b = 2.1
+            v_2D = b*ones(Float64, size(g_2D))
+            u_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y))
+            @test integral(H,v_2D) ≈ b*Lx*Ly rtol = 1e-13
+            @test integral(H,u_2D) ≈ π rtol = 1e-8
+        end
     end
 
     @testset "Accuracy" begin
@@ -462,96 +466,87 @@
             f_i(x) = 1/factorial(i)*x^i
             v = (v...,evalOn(g_1D,f_i))
         end
-        # TODO: Bug in readOperator for 2nd order
-        # # 2nd order
-        # op2 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
-        # H2 = diagonal_quadrature(g_1D,op2.quadratureClosure)
-        # for i = 1:3
-        #     @test integral(H2,v[i]) ≈ v[i+1] rtol = 1e-14
-        # end
 
-        # 4th order
-        op4 = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-        H4 = diagonal_quadrature(g_1D,op4.quadratureClosure)
-        for i = 1:4
-            @test integral(H4,v[i]) ≈ v[i+1][end] -  v[i+1][1] rtol = 1e-14
+        @testset "2nd order" begin
+            op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2)
+            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            for i = 1:2
+                @test integral(H,v[i]) ≈ v[i+1][end] - v[i+1][1] rtol = 1e-14
+            end
         end
-    end
 
-    @testset "Inferred" begin
-        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
-        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
-        v_1D = ones(Float64, size(g_1D))
-        v_2D = ones(Float64, size(g_2D))
-        @inferred H_x*v_1D
-        @inferred H_x'*v_1D
-        @inferred H_xy*v_2D
-        @inferred H_xy'*v_2D
+        @testset "4th order" begin
+            op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+            H = DiagonalQuadrature(g_1D,op.quadratureClosure)
+            for i = 1:4
+                @test integral(H,v[i]) ≈ v[i+1][end] -  v[i+1][1] rtol = 1e-14
+            end
+        end
     end
 end
 
-@testset "InverseDiagonalQuadrature" begin
-    op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
-    Lx = π/2.
-    Ly = Float64(π)
-    g_1D = EquidistantGrid(77, 0.0, Lx)
-    g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
-    @testset "Constructors" begin
-        # 1D
-        Hi_x = InverseDiagonalQuadrature(inverse_spacing(g_1D)[1], 1. ./ op.quadratureClosure, size(g_1D));
-        @test Hi_x == InverseDiagonalQuadrature(g_1D,op.quadratureClosure)
-        @test Hi_x == inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
-        @test Hi_x isa TensorMapping{T,1,1} where T
-        @test Hi_x' isa TensorMapping{T,1,1} where T
-
-        # 2D
-        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
-        @test Hi_xy isa TensorMappingComposition
-        @test Hi_xy isa TensorMapping{T,2,2} where T
-        @test Hi_xy' isa TensorMapping{T,2,2} where T
-    end
-
-    @testset "Sizes" begin
-        # 1D
-        Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
-        @test domain_size(Hi_x) == size(g_1D)
-        @test range_size(Hi_x) == size(g_1D)
-        # 2D
-        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
-        @test domain_size(Hi_xy) == size(g_2D)
-        @test range_size(Hi_xy) == size(g_2D)
-    end
-
-    @testset "Application" begin
-        # 1D
-        H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
-        Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
-        v_1D = evalOn(g_1D,x->sin(x))
-        u_1D = evalOn(g_1D,x->x^3-x^2+1)
-        @test Hi_x*H_x*v_1D ≈ v_1D rtol = 1e-15
-        @test Hi_x*H_x*u_1D ≈ u_1D rtol = 1e-15
-        @test Hi_x*v_1D == Hi_x'*v_1D
-        # 2D
-        H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
-        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
-        v_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y))
-        u_2D = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y))
-        @test Hi_xy*H_xy*v_2D ≈ v_2D rtol = 1e-15
-        @test Hi_xy*H_xy*u_2D ≈ u_2D rtol = 1e-15
-        @test Hi_xy*v_2D ≈ Hi_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason?
-    end
-
-    @testset "Inferred" begin
-        Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
-        Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
-        v_1D = ones(Float64, size(g_1D))
-        v_2D = ones(Float64, size(g_2D))
-        @inferred Hi_x*v_1D
-        @inferred Hi_x'*v_1D
-        @inferred Hi_xy*v_2D
-        @inferred Hi_xy'*v_2D
-    end
-end
+# @testset "InverseDiagonalQuadrature" begin
+#     op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
+#     Lx = π/2.
+#     Ly = Float64(π)
+#     g_1D = EquidistantGrid(77, 0.0, Lx)
+#     g_2D = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
+#     @testset "Constructors" begin
+#         # 1D
+#         Hi_x = InverseDiagonalQuadrature(inverse_spacing(g_1D)[1], 1. ./ op.quadratureClosure, size(g_1D));
+#         @test Hi_x == InverseDiagonalQuadrature(g_1D,op.quadratureClosure)
+#         @test Hi_x == inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+#         @test Hi_x isa TensorMapping{T,1,1} where T
+#         @test Hi_x' isa TensorMapping{T,1,1} where T
+#
+#         # 2D
+#         Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+#         @test Hi_xy isa TensorMappingComposition
+#         @test Hi_xy isa TensorMapping{T,2,2} where T
+#         @test Hi_xy' isa TensorMapping{T,2,2} where T
+#     end
+#
+#     @testset "Sizes" begin
+#         # 1D
+#         Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+#         @test domain_size(Hi_x) == size(g_1D)
+#         @test range_size(Hi_x) == size(g_1D)
+#         # 2D
+#         Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+#         @test domain_size(Hi_xy) == size(g_2D)
+#         @test range_size(Hi_xy) == size(g_2D)
+#     end
+#
+#     @testset "Application" begin
+#         # 1D
+#         H_x = diagonal_quadrature(g_1D,op.quadratureClosure)
+#         Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+#         v_1D = evalOn(g_1D,x->sin(x))
+#         u_1D = evalOn(g_1D,x->x^3-x^2+1)
+#         @test Hi_x*H_x*v_1D ≈ v_1D rtol = 1e-15
+#         @test Hi_x*H_x*u_1D ≈ u_1D rtol = 1e-15
+#         @test Hi_x*v_1D == Hi_x'*v_1D
+#         # 2D
+#         H_xy = diagonal_quadrature(g_2D,op.quadratureClosure)
+#         Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+#         v_2D = evalOn(g_2D,(x,y)->sin(x)+cos(y))
+#         u_2D = evalOn(g_2D,(x,y)->x*y + x^5 - sqrt(y))
+#         @test Hi_xy*H_xy*v_2D ≈ v_2D rtol = 1e-15
+#         @test Hi_xy*H_xy*u_2D ≈ u_2D rtol = 1e-15
+#         @test Hi_xy*v_2D ≈ Hi_xy'*v_2D rtol = 1e-16 #Failed for exact equality. Must differ in operation order for some reason?
+#     end
+#
+#     @testset "Inferred" begin
+#         Hi_x = inverse_diagonal_quadrature(g_1D,op.quadratureClosure)
+#         Hi_xy = inverse_diagonal_quadrature(g_2D,op.quadratureClosure)
+#         v_1D = ones(Float64, size(g_1D))
+#         v_2D = ones(Float64, size(g_2D))
+#         @inferred Hi_x*v_1D
+#         @inferred Hi_x'*v_1D
+#         @inferred Hi_xy*v_2D
+#         @inferred Hi_xy'*v_2D
+#     end
+# end
 
 @testset "BoundaryOperator" begin
     closure_stencil = Stencil((0,2), (2.,1.,3.))