comparison src/LazyTensors/lazy_tensor_operations.jl @ 545:ff412b29db31 feature/quadrature_as_outer_product

Merge with default
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 26 Nov 2020 21:56:33 +0100
parents 848dec405332
children 62d96e2cd165
comparison
equal deleted inserted replaced
507:576c6d1acc28 545:ff412b29db31
238 InflatedTensorMapping(before::IdentityMapping, tm::TensorMapping{T}) where T = InflatedTensorMapping(before,tm,IdentityMapping{T}()) 238 InflatedTensorMapping(before::IdentityMapping, tm::TensorMapping{T}) where T = InflatedTensorMapping(before,tm,IdentityMapping{T}())
239 InflatedTensorMapping(tm::TensorMapping{T}, after::IdentityMapping) where T = InflatedTensorMapping(IdentityMapping{T}(),tm,after) 239 InflatedTensorMapping(tm::TensorMapping{T}, after::IdentityMapping) where T = InflatedTensorMapping(IdentityMapping{T}(),tm,after)
240 # Resolve ambiguity between the two previous methods 240 # Resolve ambiguity between the two previous methods
241 InflatedTensorMapping(I1::IdentityMapping{T}, I2::IdentityMapping{T}) where T = InflatedTensorMapping(I1,I2,IdentityMapping{T}()) 241 InflatedTensorMapping(I1::IdentityMapping{T}, I2::IdentityMapping{T}) where T = InflatedTensorMapping(I1,I2,IdentityMapping{T}())
242 242
243 # TODO: Implement syntax and constructors for products of different combinations of InflatedTensorMapping and IdentityMapping
244
245 # TODO: Implement some pretty printing in terms of ⊗. E.g InflatedTensorMapping(I(3),B,I(2)) -> I(3)⊗B⊗I(2) 243 # TODO: Implement some pretty printing in terms of ⊗. E.g InflatedTensorMapping(I(3),B,I(2)) -> I(3)⊗B⊗I(2)
246 244
247 function range_size(itm::InflatedTensorMapping) 245 function range_size(itm::InflatedTensorMapping)
248 return flatten_tuple( 246 return flatten_tuple(
249 range_size(itm.before), 247 range_size(itm.before),
259 domain_size(itm.after), 257 domain_size(itm.after),
260 ) 258 )
261 end 259 end
262 260
263 function apply(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Any,R}) where {T,R,D} 261 function apply(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{T,D}, I::Vararg{Any,R}) where {T,R,D}
264 view_index, inner_index = split_index(itm, I...) 262 dim_before = range_dim(itm.before)
263 dim_domain = domain_dim(itm.tm)
264 dim_range = range_dim(itm.tm)
265 dim_after = range_dim(itm.after)
266
267 view_index, inner_index = split_index(Val(dim_before), Val(dim_domain), Val(dim_range), Val(dim_after), I...)
265 268
266 v_inner = view(v, view_index...) 269 v_inner = view(v, view_index...)
267 return apply(itm.tm, v_inner, inner_index...) 270 return apply(itm.tm, v_inner, inner_index...)
268 end 271 end
269 272
270 273 function apply_transpose(itm::InflatedTensorMapping{T,R,D}, v::AbstractArray{T,R}, I::Vararg{Any,D}) where {T,R,D}
271 """ 274 dim_before = range_dim(itm.before)
272 split_index(...) 275 dim_domain = domain_dim(itm.tm)
273 276 dim_range = range_dim(itm.tm)
274 Splits the multi-index into two parts. One part for the view that the inner TensorMapping acts on, and one part for indexing the result 277 dim_after = range_dim(itm.after)
278
279 view_index, inner_index = split_index(Val(dim_before), Val(dim_range), Val(dim_domain), Val(dim_after), I...)
280
281 v_inner = view(v, view_index...)
282 return apply_transpose(itm.tm, v_inner, inner_index...)
283 end
284
285
286 """
287 split_index(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...)
288
289 Splits the multi-index `I` into two parts. One part which is expected to be
290 used as a view, and one which is expected to be used as an index.
275 Eg. 291 Eg.
276 ``` 292 ```
277 (1,2,3,4) -> (1,:,:,4), (2,3) 293 split_index(Val(1),Val(3),Val(2),Val(1),(1,2,3,4)) -> (1,:,:,:,4), (2,3)
278 ``` 294 ```
279 """ 295
280 function split_index(itm::InflatedTensorMapping{T,R,D}, I::Vararg{Any,R}) where {T,R,D} 296 `dim_view` controls how many colons are in the view, and `dim_index` controls
281 I_before = slice_tuple(I, Val(1), Val(range_dim(itm.before))) 297 how many elements are extracted from the middle.
282 I_after = slice_tuple(I, Val(R-range_dim(itm.after)+1), Val(R)) 298 `dim_before` and `dim_after` decides the length of the index parts before and after the colons in the view index.
283 299
284 view_index = (I_before..., ntuple((i)->:,domain_dim(itm.tm))..., I_after...) 300 Arguments should satisfy `length(I) == dim_before+B_domain+dim_after`.
285 inner_index = slice_tuple(I, Val(range_dim(itm.before)+1), Val(R-range_dim(itm.after))) 301
286 302 The returned values satisfy
287 return (view_index, inner_index) 303 * `length(view_index) == dim_before + dim_view + dim_after`
304 * `length(I_middle) == dim_index`
305 """
306 function split_index(::Val{dim_before}, ::Val{dim_view}, ::Val{dim_index}, ::Val{dim_after}, I...) where {dim_before,dim_view, dim_index,dim_after}
307 I_before, I_middle, I_after = split_tuple(I, Val(dim_before), Val(dim_index))
308
309 view_index = (I_before..., ntuple((i)->:, dim_view)..., I_after...)
310
311 return view_index, I_middle
288 end 312 end
289 313
290 # TODO: Can this be replaced by something more elegant while still being type stable? 2020-10-21 314 # TODO: Can this be replaced by something more elegant while still being type stable? 2020-10-21
291 # See: 315 # See:
292 # https://github.com/JuliaLang/julia/issues/34884 316 # https://github.com/JuliaLang/julia/issues/34884
298 Equivalent to t[l:u] but type stable. 322 Equivalent to t[l:u] but type stable.
299 """ 323 """
300 function slice_tuple(t,::Val{L},::Val{U}) where {L,U} 324 function slice_tuple(t,::Val{L},::Val{U}) where {L,U}
301 return ntuple(i->t[i+L-1], U-L+1) 325 return ntuple(i->t[i+L-1], U-L+1)
302 end 326 end
327
328 """
329 split_tuple(t::Tuple{...}, ::Val{M}) where {N,M}
330
331 Split the tuple `t` into two parts. the first part is `M` long.
332 E.g
333 ```
334 split_tuple((1,2,3,4),Val(3)) -> (1,2,3), (4,)
335 ```
336 """
337 function split_tuple(t::NTuple{N},::Val{M}) where {N,M}
338 return slice_tuple(t,Val(1), Val(M)), slice_tuple(t,Val(M+1), Val(N))
339 end
340
341 """
342 split_tuple(t::Tuple{...},::Val{M},::Val{K}) where {N,M,K}
343
344 Same as `split_tuple(t::NTuple{N},::Val{M})` but splits the tuple in three parts. With the first
345 two parts having lenght `M` and `K`.
346 """
347 function split_tuple(t::NTuple{N},::Val{M},::Val{K}) where {N,M,K}
348 p1, tail = split_tuple(t, Val(M))
349 p2, p3 = split_tuple(tail, Val(K))
350 return p1,p2,p3
351 end
352
303 353
304 """ 354 """
305 flatten_tuple(t) 355 flatten_tuple(t)
306 356
307 Takes a nested tuple and flattens the whole structure 357 Takes a nested tuple and flattens the whole structure