comparison test/SbpOperators/boundaryops/boundary_operator_test.jl @ 1107:f80e69b0566b refactor/sbpoperators/inflation

Remove 2D tests from boundary_operator_test
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 09 Jun 2022 07:24:11 +0200
parents 0ba4609605d4
children 6b24dc2d7b11
comparison
equal deleted inserted replaced
1105:0ba4609605d4 1107:f80e69b0566b
5 using Sbplib.Grids 5 using Sbplib.Grids
6 using Sbplib.RegionIndices 6 using Sbplib.RegionIndices
7 import Sbplib.SbpOperators.Stencil 7 import Sbplib.SbpOperators.Stencil
8 import Sbplib.SbpOperators.BoundaryOperator 8 import Sbplib.SbpOperators.BoundaryOperator
9 9
10 # REVIEW: Remove the commented tests. It is tested in the user code.
11 # TODO: What should happen to all the commented tests? Deleted? Replicated for user code?
12 10
13 @testset "BoundaryOperator" begin 11 @testset "BoundaryOperator" begin
14 closure_stencil = Stencil(2.,1.,3.; center = 1) 12 closure_stencil = Stencil(2.,1.,3.; center = 1)
15 g_1D = EquidistantGrid(11, 0.0, 1.0) 13 g_1D = EquidistantGrid(11, 0.0, 1.0)
16 g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) 14 g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0))
23 21
24 op_r = BoundaryOperator{Upper}(closure_stencil,size(g_1D)[1]) # TBD: Is this constructor really needed? looks weird! 22 op_r = BoundaryOperator{Upper}(closure_stencil,size(g_1D)[1]) # TBD: Is this constructor really needed? looks weird!
25 @test op_r == BoundaryOperator(g_1D,closure_stencil,Upper()) 23 @test op_r == BoundaryOperator(g_1D,closure_stencil,Upper())
26 @test op_r isa LazyTensor{T,0,1} where T 24 @test op_r isa LazyTensor{T,0,1} where T
27 end 25 end
28
29 # @testset "2D" begin
30 # e_w = boundary_operator(g_2D,closure_stencil,CartesianBoundary{1,Upper}())
31 # @test e_w isa InflatedTensor
32 # @test e_w isa LazyTensor{T,1,2} where T
33 # end
34 end 26 end
35 27
36 op_l = BoundaryOperator(g_1D, closure_stencil, Lower()) 28 op_l = BoundaryOperator(g_1D, closure_stencil, Lower())
37 op_r = BoundaryOperator(g_1D, closure_stencil, Upper()) 29 op_r = BoundaryOperator(g_1D, closure_stencil, Upper())
38 # op_w, op_e, op_s, op_n = boundary_operator.(Ref(g_2D), Ref(closure_stencil), boundary_identifiers(g_2D))
39 30
40 @testset "Sizes" begin 31 @testset "Sizes" begin
41 @testset "1D" begin 32 @testset "1D" begin
42 @test domain_size(op_l) == (11,) 33 @test domain_size(op_l) == (11,)
43 @test domain_size(op_r) == (11,) 34 @test domain_size(op_r) == (11,)
44 35
45 @test range_size(op_l) == () 36 @test range_size(op_l) == ()
46 @test range_size(op_r) == () 37 @test range_size(op_r) == ()
47 end 38 end
48
49 # @testset "2D" begin
50 # @test domain_size(op_w) == (11,15)
51 # @test domain_size(op_e) == (11,15)
52 # @test domain_size(op_s) == (11,15)
53 # @test domain_size(op_n) == (11,15)
54
55 # @test range_size(op_w) == (15,)
56 # @test range_size(op_e) == (15,)
57 # @test range_size(op_s) == (11,)
58 # @test range_size(op_n) == (11,)
59 # end
60 end 39 end
61 40
62 @testset "Application" begin 41 @testset "Application" begin
63 @testset "1D" begin 42 @testset "1D" begin
64 v = evalOn(g_1D,x->1+x^2) 43 v = evalOn(g_1D,x->1+x^2)
75 u = fill(1. +im) 54 u = fill(1. +im)
76 @test (op_l'*u)[1] isa ComplexF64 55 @test (op_l'*u)[1] isa ComplexF64
77 @test (op_l'*u)[5] isa ComplexF64 56 @test (op_l'*u)[5] isa ComplexF64
78 @test (op_l'*u)[11] isa ComplexF64 57 @test (op_l'*u)[11] isa ComplexF64
79 end 58 end
80
81 # @testset "2D" begin
82 # v = rand(size(g_2D)...)
83 # u = fill(3.124)
84 # @test op_w*v ≈ 2*v[1,:] + v[2,:] + 3*v[3,:] rtol = 1e-14
85 # @test op_e*v ≈ 2*v[end,:] + v[end-1,:] + 3*v[end-2,:] rtol = 1e-14
86 # @test op_s*v ≈ 2*v[:,1] + v[:,2] + 3*v[:,3] rtol = 1e-14
87 # @test op_n*v ≈ 2*v[:,end] + v[:,end-1] + 3*v[:,end-2] rtol = 1e-14
88
89
90 # g_x = rand(size(g_2D)[1])
91 # g_y = rand(size(g_2D)[2])
92
93 # G_w = zeros(Float64, size(g_2D)...)
94 # G_w[1,:] = 2*g_y
95 # G_w[2,:] = g_y
96 # G_w[3,:] = 3*g_y
97
98 # G_e = zeros(Float64, size(g_2D)...)
99 # G_e[end,:] = 2*g_y
100 # G_e[end-1,:] = g_y
101 # G_e[end-2,:] = 3*g_y
102
103 # G_s = zeros(Float64, size(g_2D)...)
104 # G_s[:,1] = 2*g_x
105 # G_s[:,2] = g_x
106 # G_s[:,3] = 3*g_x
107
108 # G_n = zeros(Float64, size(g_2D)...)
109 # G_n[:,end] = 2*g_x
110 # G_n[:,end-1] = g_x
111 # G_n[:,end-2] = 3*g_x
112
113 # @test op_w'*g_y == G_w
114 # @test op_e'*g_y == G_e
115 # @test op_s'*g_x == G_s
116 # @test op_n'*g_x == G_n
117 # end
118 59
119 @testset "Regions" begin 60 @testset "Regions" begin
120 u = fill(3.124) 61 u = fill(3.124)
121 @test (op_l'*u)[Index(1,Lower)] == 2*u[] 62 @test (op_l'*u)[Index(1,Lower)] == 2*u[]
122 @test (op_l'*u)[Index(2,Lower)] == u[] 63 @test (op_l'*u)[Index(2,Lower)] == u[]