Mercurial > repos > public > sbplib_julia
comparison src/Grids/EquidistantGrid.jl @ 912:f800f97b3a45 feature/variable_derivatives
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 15 Feb 2022 15:15:11 +0100 |
parents | b900fea1c057 |
children | 9b40aeac4269 5b3d4a8ec3ab |
comparison
equal
deleted
inserted
replaced
906:33c7e266e1a9 | 912:f800f97b3a45 |
---|---|
3 export inverse_spacing | 3 export inverse_spacing |
4 export restrict | 4 export restrict |
5 export boundary_identifiers | 5 export boundary_identifiers |
6 export boundary_grid | 6 export boundary_grid |
7 export refine | 7 export refine |
8 export coarsen | |
8 | 9 |
9 """ | 10 """ |
10 EquidistantGrid(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) | 11 EquidistantGrid{Dim,T<:Real} <: AbstractGrid |
11 EquidistantGrid{T}() | |
12 | 12 |
13 `EquidistantGrid` is a grid with equidistant grid spacing per coordinat direction. | 13 `Dim`-dimensional equidistant grid with coordinates of type `T`. |
14 | |
15 `EquidistantGrid(size, limit_lower, limit_upper)` construct the grid with the | |
16 domain defined by the two points P1, and P2 given by `limit_lower` and | |
17 `limit_upper`. The length of the domain sides are given by the components of | |
18 (P2-P1). E.g for a 2D grid with P1=(-1,0) and P2=(1,2) the domain is defined | |
19 as (-1,1)x(0,2). The side lengths of the grid are not allowed to be negative. | |
20 The number of equidistantly spaced points in each coordinate direction are given | |
21 by `size`. | |
22 | |
23 `EquidistantGrid{T}()` constructs a 0-dimensional grid. | |
24 | |
25 """ | 14 """ |
26 struct EquidistantGrid{Dim,T<:Real} <: AbstractGrid | 15 struct EquidistantGrid{Dim,T<:Real} <: AbstractGrid |
27 size::NTuple{Dim, Int} | 16 size::NTuple{Dim, Int} |
28 limit_lower::NTuple{Dim, T} | 17 limit_lower::NTuple{Dim, T} |
29 limit_upper::NTuple{Dim, T} | 18 limit_upper::NTuple{Dim, T} |
30 | 19 |
31 # General constructor | |
32 function EquidistantGrid{Dim,T}(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where {Dim,T} | 20 function EquidistantGrid{Dim,T}(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where {Dim,T} |
33 if any(size .<= 0) | 21 if any(size .<= 0) |
34 throw(DomainError("all components of size must be postive")) | 22 throw(DomainError("all components of size must be postive")) |
35 end | 23 end |
36 if any(limit_upper.-limit_lower .<= 0) | 24 if any(limit_upper.-limit_lower .<= 0) |
38 end | 26 end |
39 return new{Dim,T}(size, limit_lower, limit_upper) | 27 return new{Dim,T}(size, limit_lower, limit_upper) |
40 end | 28 end |
41 end | 29 end |
42 | 30 |
31 """ | |
32 EquidistantGrid(size, limit_lower, limit_upper) | |
33 | |
34 Construct an equidistant grid with corners at the coordinates `limit_lower` and | |
35 `limit_upper`. | |
36 | |
37 The length of the domain sides are given by the components of | |
38 `limit_upper-limit_lower`. E.g for a 2D grid with `limit_lower=(-1,0)` and `limit_upper=(1,2)` the domain is defined | |
39 as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative. | |
40 | |
41 The number of equidistantly spaced points in each coordinate direction are given | |
42 by the tuple `size`. | |
43 """ | |
43 function EquidistantGrid(size, limit_lower, limit_upper) | 44 function EquidistantGrid(size, limit_lower, limit_upper) |
44 return EquidistantGrid{length(size), eltype(limit_lower)}(size, limit_lower, limit_upper) | 45 return EquidistantGrid{length(size), eltype(limit_lower)}(size, limit_lower, limit_upper) |
45 end | 46 end |
47 | |
48 """ | |
49 EquidistantGrid{T}() | |
50 | |
51 Constructs a 0-dimensional grid. | |
52 """ | |
46 EquidistantGrid{T}() where T = EquidistantGrid{0,T}((),(),()) # Convenience constructor for 0-dim grid | 53 EquidistantGrid{T}() where T = EquidistantGrid{0,T}((),(),()) # Convenience constructor for 0-dim grid |
47 | 54 |
48 """ | 55 """ |
49 EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) | 56 EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) |
50 | 57 |
68 dimension(grid::EquidistantGrid{Dim}) where Dim = Dim | 75 dimension(grid::EquidistantGrid{Dim}) where Dim = Dim |
69 | 76 |
70 """ | 77 """ |
71 spacing(grid::EquidistantGrid) | 78 spacing(grid::EquidistantGrid) |
72 | 79 |
73 The spacing between the grid points of the grid. | 80 The spacing between grid points. |
74 """ | 81 """ |
75 spacing(grid::EquidistantGrid) = (grid.limit_upper.-grid.limit_lower)./(grid.size.-1) | 82 spacing(grid::EquidistantGrid) = (grid.limit_upper.-grid.limit_lower)./(grid.size.-1) |
76 | 83 |
77 """ | 84 """ |
78 inverse_spacing(grid::EquidistantGrid) | 85 inverse_spacing(grid::EquidistantGrid) |
79 | 86 |
80 The reciprocal of the spacing between the grid points of the grid. | 87 The reciprocal of the spacing between grid points. |
81 """ | 88 """ |
82 inverse_spacing(grid::EquidistantGrid) = 1 ./ spacing(grid) | 89 inverse_spacing(grid::EquidistantGrid) = 1 ./ spacing(grid) |
83 | 90 |
84 """ | 91 """ |
85 points(grid::EquidistantGrid) | 92 points(grid::EquidistantGrid) |
97 end | 104 end |
98 | 105 |
99 """ | 106 """ |
100 restrict(::EquidistantGrid, dim) | 107 restrict(::EquidistantGrid, dim) |
101 | 108 |
102 Pick out given dimensions from the grid and return a grid for them | 109 Pick out given dimensions from the grid and return a grid for them. |
103 """ | 110 """ |
104 function restrict(grid::EquidistantGrid, dim) | 111 function restrict(grid::EquidistantGrid, dim) |
105 size = grid.size[dim] | 112 size = grid.size[dim] |
106 limit_lower = grid.limit_lower[dim] | 113 limit_lower = grid.limit_lower[dim] |
107 limit_upper = grid.limit_upper[dim] | 114 limit_upper = grid.limit_upper[dim] |
143 """ | 150 """ |
144 refine(grid::EquidistantGrid, r::Int) | 151 refine(grid::EquidistantGrid, r::Int) |
145 | 152 |
146 Refines `grid` by a factor `r`. The factor is applied to the number of | 153 Refines `grid` by a factor `r`. The factor is applied to the number of |
147 intervals which is 1 less than the size of the grid. | 154 intervals which is 1 less than the size of the grid. |
155 | |
156 See also: [`coarsen`](@ref) | |
148 """ | 157 """ |
149 function refine(grid::EquidistantGrid, r::Int) | 158 function refine(grid::EquidistantGrid, r::Int) |
150 sz = size(grid) | 159 sz = size(grid) |
151 new_sz = (sz .- 1).*r .+ 1 | 160 new_sz = (sz .- 1).*r .+ 1 |
152 return EquidistantGrid{dimension(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) | 161 return EquidistantGrid{dimension(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) |
153 end | 162 end |
163 | |
164 """ | |
165 coarsen(grid::EquidistantGrid, r::Int) | |
166 | |
167 Coarsens `grid` by a factor `r`. The factor is applied to the number of | |
168 intervals which is 1 less than the size of the grid. If the number of | |
169 intervals are not divisible by `r` an error is raised. | |
170 | |
171 See also: [`refine`](@ref) | |
172 """ | |
173 function coarsen(grid::EquidistantGrid, r::Int) | |
174 sz = size(grid) | |
175 | |
176 if !all(n -> (n % r == 0), sz.-1) | |
177 throw(DomainError(r, "Size minus 1 must be divisible by the ratio.")) | |
178 end | |
179 | |
180 new_sz = (sz .- 1).÷r .+ 1 | |
181 | |
182 return EquidistantGrid{dimension(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper) | |
183 end |