comparison src/Grids/grid.jl @ 1360:f59228534d3a tooling/benchmarks

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Sat, 20 May 2023 15:15:22 +0200
parents 08f06bfacd5c
children 4d628c83987e 86026367a9ff
comparison
equal deleted inserted replaced
1321:42738616422e 1360:f59228534d3a
1 """ 1 """
2 Grid 2 Grid{T,D}
3 3
4 Should implement 4 A grid with coordinates of type `T`, e.g. `SVector{3,Float64}`, and dimension
5 Base.ndims(grid::Grid) 5 `D`. The grid can be embedded in a higher dimension in which case the number
6 points(grid::Grid) 6 of indices and the number of components of the coordinate vectors will be
7 different.
8
9 All grids are expected to behave as a grid function for the coordinates.
10
11 `Grids` is top level abstract type for grids. A grid should implement Julia's interfaces for
12 indexing and iteration.
13
14 ## Note
15
16 Importantly a grid does not have to be an `AbstractArray`. The reason is to
17 allow flexible handling of special types of grids like multi-block grids, or
18 grids with special indexing.
19 """
20 abstract type Grid{T,D} end
21
22 Base.ndims(::Grid{T,D}) where {T,D} = D
23 Base.eltype(::Type{<:Grid{T}}) where T = T
7 24
8 """ 25 """
9 abstract type Grid end 26 coordinate_size(g)
10 function points end 27
28 The lenght of the coordinate vector of `Grid` `g`.
29 """
30 coordinate_size(::Type{<:Grid{T}}) where T = _ncomponents(T)
31 coordinate_size(g::Grid) = coordinate_size(typeof(g)) # TBD: Name of this function?!
11 32
12 """ 33 """
13 dims(grid::Grid) 34 component_type(g)
14 35
15 A range containing the dimensions of `grid` 36 The type of the components of the coordinate vector of `Grid` `g`.
16 """ 37 """
17 dims(grid::Grid) = 1:ndims(grid) 38 component_type(::Type{<:Grid{T}}) where T = eltype(T)
39 component_type(g::Grid) = component_type(typeof(g))
18 40
19 """ 41 """
20 evalOn(grid::Grid, f::Function) 42 refine(g::Grid, r)
21 43
22 Evaluate function `f` on `grid` 44 The grid where `g` is refined by the factor `r`.
45
46 See also: [`coarsen`](@ref).
23 """ 47 """
24 function evalOn(grid::Grid, f::Function) 48 function refine end
25 F(x) = f(x...) 49
26 return F.(points(grid)) 50 """
51 coarsen(g::Grid, r)
52
53 The grid where `g` is coarsened by the factor `r`.
54
55 See also: [`refine`](@ref).
56 """
57 function coarsen end
58
59 """
60 boundary_identifiers(g::Grid)
61
62 Identifiers for all the boundaries of `g`.
63 """
64 function boundary_identifiers end
65
66 """
67 boundary_grid(g::Grid, id::BoundaryIdentifier)
68
69 The grid for the boundary specified by `id`.
70 """
71 function boundary_grid end
72 # TBD: Can we implement a version here that accepts multiple ids and grouped boundaries? Maybe we need multiblock stuff?
73
74 """
75 eval_on(g::Grid, f)
76
77 Lazy evaluation `f` on the grid. `f` can either be on the form `f(x,y,...)`
78 with each coordinate as an argument, or on the form `f(x̄)` taking a
79 coordinate vector.
80
81 For concrete array grid functions `map(f,g)` can be used instead.
82 """
83 eval_on(g::Grid, f) = eval_on(g, f, Base.IteratorSize(g))
84 function eval_on(g::Grid, f, ::Base.HasShape)
85 if hasmethod(f, (Any,))
86 return LazyTensors.LazyFunctionArray((I...)->f(g[I...]), size(g))
87 else
88 return LazyTensors.LazyFunctionArray((I...)->f(g[I...]...), size(g))
89 end
27 end 90 end
91
92 _ncomponents(::Type{<:Number}) = 1
93 _ncomponents(T::Type{<:SVector}) = length(T)