Mercurial > repos > public > sbplib_julia
comparison test/Grids/mapped_grid_test.jl @ 1751:f3d7e2d7a43f feature/sbp_operators/laplace_curvilinear
Merge feature/grids/manifolds
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 11 Sep 2024 16:26:19 +0200 |
parents | 03894fd7b132 |
children | 819ab806960f |
comparison
equal
deleted
inserted
replaced
1731:3684db043add | 1751:f3d7e2d7a43f |
---|---|
1 using Sbplib.Grids | 1 using Diffinitive.Grids |
2 using Sbplib.RegionIndices | 2 using Diffinitive.RegionIndices |
3 using Test | 3 using Test |
4 using StaticArrays | 4 using StaticArrays |
5 using LinearAlgebra | 5 using LinearAlgebra |
6 | 6 |
7 | 7 |
26 | 26 |
27 return x̄, J | 27 return x̄, J |
28 end | 28 end |
29 | 29 |
30 @testset "MappedGrid" begin | 30 @testset "MappedGrid" begin |
31 lg = equidistant_grid((0,0), (1,1), 11, 11) # TODO: Change dims of the grid to be different | 31 @testset "Constructor" begin |
32 x̄ = map(ξ̄ -> 2ξ̄, lg) | 32 lg = equidistant_grid((0,0), (1,1), 11, 21) |
33 J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) | 33 |
34 mg = MappedGrid(lg, x̄, J) | 34 x̄ = map(ξ̄ -> 2ξ̄, lg) |
35 | 35 J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) |
36 # TODO: Test constructor for different dims of range and domain for the coordinates | 36 mg = MappedGrid(lg, x̄, J) |
37 # TODO: Test constructor with different type than TensorGrid. a dummy type? | 37 |
38 | 38 @test mg isa Grid{SVector{2, Float64},2} |
39 @test_broken false # @test_throws ArgumentError("Sizes must match") MappedGrid(lg, map(ξ̄ -> @SArray[ξ̄[1], ξ̄[2], -ξ̄[1]], lg), rand(SMatrix{2,3,Float64},15,11)) | 39 @test jacobian(mg) isa Array{<:AbstractMatrix} |
40 | 40 @test logicalgrid(mg) isa Grid |
41 | 41 |
42 @test mg isa Grid{SVector{2, Float64},2} | 42 @test collect(mg) == x̄ |
43 | 43 @test jacobian(mg) == J |
44 @test jacobian(mg) isa Array{<:AbstractMatrix} | 44 @test logicalgrid(mg) == lg |
45 @test logicalgrid(mg) isa Grid | 45 |
46 | |
47 x̄ = map(ξ̄ -> @SVector[ξ̄[1],ξ̄[2], ξ̄[1] + ξ̄[2]], lg) | |
48 J = map(ξ̄ -> @SMatrix[1 0; 0 1; 1 1], lg) | |
49 mg = MappedGrid(lg, x̄, J) | |
50 | |
51 @test mg isa Grid{SVector{3, Float64},2} | |
52 @test jacobian(mg) isa Array{<:AbstractMatrix} | |
53 @test logicalgrid(mg) isa Grid | |
54 | |
55 @test collect(mg) == x̄ | |
56 @test jacobian(mg) == J | |
57 @test logicalgrid(mg) == lg | |
58 | |
59 sz1 = (10,11) | |
60 sz2 = (10,12) | |
61 @test_throws ArgumentError("Sizes must match") MappedGrid( | |
62 equidistant_grid((0,0), (1,1), sz2...), | |
63 rand(SVector{2},sz1...), | |
64 rand(SMatrix{2,2},sz1...), | |
65 ) | |
66 | |
67 @test_throws ArgumentError("Sizes must match") MappedGrid( | |
68 equidistant_grid((0,0), (1,1), sz1...), | |
69 rand(SVector{2},sz2...), | |
70 rand(SMatrix{2,2},sz1...), | |
71 ) | |
72 | |
73 @test_throws ArgumentError("Sizes must match") MappedGrid( | |
74 equidistant_grid((0,0), (1,1), sz1...), | |
75 rand(SVector{2},sz1...), | |
76 rand(SMatrix{2,2},sz2...), | |
77 ) | |
78 | |
79 err_str = "The size of the jacobian must match the dimensions of the grid and coordinates" | |
80 @test_throws ArgumentError(err_str) MappedGrid( | |
81 equidistant_grid((0,0), (1,1), 10, 11), | |
82 rand(SVector{3}, 10, 11), | |
83 rand(SMatrix{3,4}, 10, 11), | |
84 ) | |
85 | |
86 @test_throws ArgumentError(err_str) MappedGrid( | |
87 equidistant_grid((0,0), (1,1), 10, 11), | |
88 rand(SVector{3}, 10, 11), | |
89 rand(SMatrix{4,2}, 10, 11), | |
90 ) | |
91 end | |
46 | 92 |
47 @testset "Indexing Interface" begin | 93 @testset "Indexing Interface" begin |
94 lg = equidistant_grid((0,0), (1,1), 11, 21) | |
95 x̄ = map(ξ̄ -> 2ξ̄, lg) | |
96 J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) | |
48 mg = MappedGrid(lg, x̄, J) | 97 mg = MappedGrid(lg, x̄, J) |
49 @test mg[1,1] == [0.0, 0.0] | 98 @test mg[1,1] == [0.0, 0.0] |
50 @test mg[4,2] == [0.6, 0.2] | 99 @test mg[4,2] == [0.6, 0.1] |
51 @test mg[6,10] == [1., 1.8] | 100 @test mg[6,10] == [1., 0.9] |
52 | 101 |
53 @test mg[begin, begin] == [0.0, 0.0] | 102 @test mg[begin, begin] == [0.0, 0.0] |
54 @test mg[end,end] == [2.0, 2.0] | 103 @test mg[end,end] == [2.0, 2.0] |
55 @test mg[begin,end] == [0., 2.] | 104 @test mg[begin,end] == [0., 2.] |
56 | 105 |
57 @test eachindex(mg) == CartesianIndices((11,11)) | 106 @test axes(mg) == (1:11, 1:21) |
58 | 107 |
59 @testset "cartesian indexing" begin | 108 @testset "cartesian indexing" begin |
60 cases = [ | 109 cases = [ |
61 (1,1) , | 110 (1,1) , |
62 (3,5) , | 111 (3,5) , |
69 @test mg[CartesianIndex(is...)] == mg[is...] | 118 @test mg[CartesianIndex(is...)] == mg[is...] |
70 end | 119 end |
71 end | 120 end |
72 | 121 |
73 @testset "eachindex" begin | 122 @testset "eachindex" begin |
74 @test eachindex(mg) == CartesianIndices((11,11)) | 123 @test eachindex(mg) == CartesianIndices((11,21)) |
75 end | 124 end |
76 | 125 |
77 @testset "firstindex" begin | 126 @testset "firstindex" begin |
78 @test firstindex(mg, 1) == 1 | 127 @test firstindex(mg, 1) == 1 |
79 @test firstindex(mg, 2) == 1 | 128 @test firstindex(mg, 2) == 1 |
80 end | 129 end |
81 | 130 |
82 @testset "lastindex" begin | 131 @testset "lastindex" begin |
83 @test lastindex(mg, 1) == 11 | 132 @test lastindex(mg, 1) == 11 |
84 @test lastindex(mg, 2) == 11 | 133 @test lastindex(mg, 2) == 21 |
85 end | 134 end |
86 end | 135 end |
87 # TODO: Test with different types of logical grids | |
88 | 136 |
89 @testset "Iterator interface" begin | 137 @testset "Iterator interface" begin |
138 lg = equidistant_grid((0,0), (1,1), 11, 21) | |
139 x̄ = map(ξ̄ -> 2ξ̄, lg) | |
140 J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) | |
141 | |
142 mg = MappedGrid(lg, x̄, J) | |
143 | |
144 lg2 = equidistant_grid((0,0), (1,1), 15, 11) | |
90 sg = MappedGrid( | 145 sg = MappedGrid( |
91 equidistant_grid((0,0), (1,1), 15, 11), | 146 equidistant_grid((0,0), (1,1), 15, 11), |
92 map(ξ̄ -> @SArray[ξ̄[1], ξ̄[2], -ξ̄[1]], lg), rand(SMatrix{2,3,Float64},15,11) | 147 map(ξ̄ -> @SArray[ξ̄[1], ξ̄[2], -ξ̄[1]], lg2), rand(SMatrix{3,2,Float64},15,11) |
93 ) | 148 ) |
94 | 149 |
95 @test eltype(mg) == SVector{2,Float64} | 150 @test eltype(mg) == SVector{2,Float64} |
96 @test eltype(sg) == SVector{3,Float64} | 151 @test eltype(sg) == SVector{3,Float64} |
97 | 152 |
98 @test eltype(typeof(mg)) == SVector{2,Float64} | 153 @test eltype(typeof(mg)) == SVector{2,Float64} |
99 @test eltype(typeof(sg)) == SVector{3,Float64} | 154 @test eltype(typeof(sg)) == SVector{3,Float64} |
100 | 155 |
101 @test size(mg) == (11,11) | 156 @test size(mg) == (11,21) |
102 @test size(sg) == (15,11) | 157 @test size(sg) == (15,11) |
103 | 158 |
104 @test size(mg,2) == 11 | 159 @test size(mg,2) == 21 |
105 @test size(sg,2) == 11 | 160 @test size(sg,2) == 11 |
106 | 161 |
107 @test length(mg) == 121 | 162 @test length(mg) == 231 |
108 @test length(sg) == 165 | 163 @test length(sg) == 165 |
109 | 164 |
110 @test Base.IteratorSize(mg) == Base.HasShape{2}() | 165 @test Base.IteratorSize(mg) == Base.HasShape{2}() |
111 @test Base.IteratorSize(typeof(mg)) == Base.HasShape{2}() | 166 @test Base.IteratorSize(typeof(mg)) == Base.HasShape{2}() |
112 | 167 |
125 | 180 |
126 @test collect(mg) == 2 .* lg | 181 @test collect(mg) == 2 .* lg |
127 end | 182 end |
128 | 183 |
129 @testset "Base" begin | 184 @testset "Base" begin |
185 lg = equidistant_grid((0,0), (1,1), 11, 21) | |
186 x̄ = map(ξ̄ -> 2ξ̄, lg) | |
187 J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) | |
188 mg = MappedGrid(lg, x̄, J) | |
189 | |
130 @test ndims(mg) == 2 | 190 @test ndims(mg) == 2 |
131 end | 191 end |
132 | 192 |
193 @testset "==" begin | |
194 sz = (15,11) | |
195 lg = equidistant_grid((0,0), (1,1), sz...) | |
196 x = rand(SVector{3,Float64}, sz...) | |
197 J = rand(SMatrix{3,2,Float64}, sz...) | |
198 | |
199 sg = MappedGrid(lg, x, J) | |
200 | |
201 sg1 = MappedGrid(equidistant_grid((0,0), (1,1), sz...), copy(x), copy(J)) | |
202 | |
203 sz2 = (15,12) | |
204 lg2 = equidistant_grid((0,0), (1,1), sz2...) | |
205 x2 = rand(SVector{3,Float64}, sz2...) | |
206 J2 = rand(SMatrix{3,2,Float64}, sz2...) | |
207 sg2 = MappedGrid(lg2, x2, J2) | |
208 | |
209 sg3 = MappedGrid(lg, rand(SVector{3,Float64}, sz...), J) | |
210 sg4 = MappedGrid(lg, x, rand(SMatrix{3,2,Float64}, sz...)) | |
211 | |
212 @test sg == sg1 | |
213 @test sg != sg2 # Different size | |
214 @test sg != sg3 # Different coordinates | |
215 @test sg != sg4 # Different jacobian | |
216 end | |
217 | |
133 @testset "boundary_identifiers" begin | 218 @testset "boundary_identifiers" begin |
219 lg = equidistant_grid((0,0), (1,1), 11, 15) | |
220 x̄ = map(ξ̄ -> 2ξ̄, lg) | |
221 J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) | |
222 mg = MappedGrid(lg, x̄, J) | |
134 @test boundary_identifiers(mg) == boundary_identifiers(lg) | 223 @test boundary_identifiers(mg) == boundary_identifiers(lg) |
135 end | 224 end |
136 | 225 |
137 @testset "boundary_indices" begin | 226 @testset "boundary_indices" begin |
138 @test boundary_indices(mg, CartesianBoundary{1,Lower}()) == boundary_indices(lg,CartesianBoundary{1,Lower}()) | 227 lg = equidistant_grid((0,0), (1,1), 11, 15) |
139 @test boundary_indices(mg, CartesianBoundary{2,Lower}()) == boundary_indices(lg,CartesianBoundary{2,Lower}()) | 228 x̄ = map(ξ̄ -> 2ξ̄, lg) |
140 @test boundary_indices(mg, CartesianBoundary{1,Upper}()) == boundary_indices(lg,CartesianBoundary{1,Upper}()) | 229 J = map(ξ̄ -> @SArray(fill(2., 2, 2)), lg) |
230 mg = MappedGrid(lg, x̄, J) | |
231 | |
232 @test boundary_indices(mg, CartesianBoundary{1,LowerBoundary}()) == boundary_indices(lg,CartesianBoundary{1,LowerBoundary}()) | |
233 @test boundary_indices(mg, CartesianBoundary{2,LowerBoundary}()) == boundary_indices(lg,CartesianBoundary{2,LowerBoundary}()) | |
234 @test boundary_indices(mg, CartesianBoundary{1,UpperBoundary}()) == boundary_indices(lg,CartesianBoundary{1,UpperBoundary}()) | |
141 end | 235 end |
142 | 236 |
143 @testset "boundary_grid" begin | 237 @testset "boundary_grid" begin |
144 x̄, J = _partially_curved_mapping() | 238 x̄, J = _partially_curved_mapping() |
145 mg = mapped_grid(x̄, J, 10, 11) | 239 mg = mapped_grid(x̄, J, 10, 11) |
150 J2((ξ, η)) = @SMatrix[ | 244 J2((ξ, η)) = @SMatrix[ |
151 0; | 245 0; |
152 1+ξ*(ξ-1); | 246 1+ξ*(ξ-1); |
153 ] | 247 ] |
154 | 248 |
155 function test_boundary_grid(mg, bId, Jb) | 249 function expected_bg(mg, bId, Jb) |
156 bg = boundary_grid(mg, bId) | |
157 | |
158 lg = logicalgrid(mg) | 250 lg = logicalgrid(mg) |
159 expected_bg = MappedGrid( | 251 return MappedGrid( |
160 boundary_grid(lg, bId), | 252 boundary_grid(lg, bId), |
161 map(x̄, boundary_grid(lg, bId)), | 253 map(x̄, boundary_grid(lg, bId)), |
162 map(Jb, boundary_grid(lg, bId)), | 254 map(Jb, boundary_grid(lg, bId)), |
163 ) | 255 ) |
164 | 256 end |
165 @testset let bId=bId, bg=bg, expected_bg=expected_bg | 257 |
166 @test collect(bg) == collect(expected_bg) | 258 let bid = TensorGridBoundary{1, LowerBoundary}() |
167 @test logicalgrid(bg) == logicalgrid(expected_bg) | 259 @test boundary_grid(mg, bid) == expected_bg(mg, bid, J2) |
168 @test jacobian(bg) == jacobian(expected_bg) | 260 end |
169 # TODO: Implement equality of a curvilinear grid and simlify the above | 261 |
170 end | 262 let bid = TensorGridBoundary{1, UpperBoundary}() |
171 end | 263 @test boundary_grid(mg, bid) == expected_bg(mg, bid, J2) |
172 | 264 end |
173 @testset test_boundary_grid(mg, TensorGridBoundary{1, Lower}(), J2) | 265 |
174 @testset test_boundary_grid(mg, TensorGridBoundary{1, Upper}(), J2) | 266 let bid = TensorGridBoundary{2, LowerBoundary}() |
175 @testset test_boundary_grid(mg, TensorGridBoundary{2, Lower}(), J1) | 267 @test boundary_grid(mg, bid) == expected_bg(mg, bid, J1) |
176 @testset test_boundary_grid(mg, TensorGridBoundary{2, Upper}(), J1) | 268 end |
269 | |
270 let bid = TensorGridBoundary{2, UpperBoundary}() | |
271 @test boundary_grid(mg, bid) == expected_bg(mg, bid, J1) | |
272 end | |
177 end | 273 end |
178 end | 274 end |
179 | 275 |
180 @testset "mapped_grid" begin | 276 @testset "mapped_grid" begin |
181 x̄, J = _partially_curved_mapping() | 277 x̄, J = _partially_curved_mapping() |
183 @test mg isa MappedGrid{SVector{2,Float64}, 2} | 279 @test mg isa MappedGrid{SVector{2,Float64}, 2} |
184 | 280 |
185 lg = equidistant_grid((0,0), (1,1), 10, 11) | 281 lg = equidistant_grid((0,0), (1,1), 10, 11) |
186 @test logicalgrid(mg) == lg | 282 @test logicalgrid(mg) == lg |
187 @test collect(mg) == map(x̄, lg) | 283 @test collect(mg) == map(x̄, lg) |
284 | |
285 @test mapped_grid(lg, x̄, J) == mg | |
188 end | 286 end |
189 | 287 |
190 @testset "jacobian_determinant" begin | 288 @testset "jacobian_determinant" begin |
191 @test_broken false | 289 x̄((ξ, η)) = @SVector[ξ*η, ξ + η^2] |
290 J((ξ, η)) = @SMatrix[ | |
291 η ξ; | |
292 1 2η; | |
293 ] | |
294 | |
295 g = mapped_grid(x̄, J, 10, 11) | |
296 J = map(logicalgrid(g)) do (ξ,η) | |
297 2η^2 - ξ | |
298 end | |
299 @test jacobian_determinant(g) ≈ J | |
300 | |
301 | |
302 lg = equidistant_grid((0,0), (1,1), 11, 21) | |
303 x̄ = map(ξ̄ -> @SVector[ξ̄[1],ξ̄[2], ξ̄[1] + ξ̄[2]], lg) | |
304 J = map(ξ̄ -> @SMatrix[1 0; 0 1; 1 1], lg) | |
305 mg = MappedGrid(lg, x̄, J) | |
306 | |
307 @test_broken jacobian(mg) isa AbstractArray{2,Float64} | |
192 end | 308 end |
193 | 309 |
194 @testset "metric_tensor" begin | 310 @testset "metric_tensor" begin |
195 @test_broken false | 311 x̄((ξ, η)) = @SVector[ξ*η, ξ + η^2] |
312 J((ξ, η)) = @SMatrix[ | |
313 η ξ; | |
314 1 2η; | |
315 ] | |
316 | |
317 g = mapped_grid(x̄, J, 10, 11) | |
318 G = map(logicalgrid(g)) do (ξ,η) | |
319 @SMatrix[ | |
320 1+η^2 ξ*η+2η; | |
321 ξ*η+2η ξ^2 + 4η^2; | |
322 ] | |
323 end | |
324 @test metric_tensor(g) ≈ G | |
196 end | 325 end |
197 | 326 |
198 @testset "metric_tensor_inverse" begin | 327 @testset "metric_tensor_inverse" begin |
199 @test_broken false | 328 x̄((ξ, η)) = @SVector[ξ + ξ^2/2, η + η^2 + ξ^2/2] |
329 J((ξ, η)) = @SMatrix[ | |
330 1+ξ 0; | |
331 ξ 1+η; | |
332 ] | |
333 | |
334 g = mapped_grid(x̄, J, 10, 11) | |
335 G⁻¹ = map(logicalgrid(g)) do (ξ,η) | |
336 @SMatrix[ | |
337 (1+η)^2 -ξ*(1+η); | |
338 -ξ*(1+η) (1+ξ)^2+ξ^2; | |
339 ]/(((1+ξ)^2+ξ^2)*(1+η)^2 - ξ^2*(1+η)^2) | |
340 | |
341 end | |
342 | |
343 @test metric_tensor_inverse(g) ≈ G⁻¹ | |
200 end | 344 end |
201 | 345 |
202 @testset "min_spacing" begin | 346 @testset "min_spacing" begin |
203 let g = mapped_grid(identity, x->@SMatrix[1], 11) | 347 let g = mapped_grid(identity, x->@SMatrix[1], 11) |
204 @test min_spacing(g) ≈ 0.1 | 348 @test min_spacing(g) ≈ 0.1 |
235 end | 379 end |
236 | 380 |
237 @testset "normal" begin | 381 @testset "normal" begin |
238 g = mapped_grid(_partially_curved_mapping()...,10, 11) | 382 g = mapped_grid(_partially_curved_mapping()...,10, 11) |
239 | 383 |
240 @test normal(g, CartesianBoundary{1,Lower}()) == fill(@SVector[-1,0], 11) | 384 @test normal(g, CartesianBoundary{1,LowerBoundary}()) == fill(@SVector[-1,0], 11) |
241 @test normal(g, CartesianBoundary{1,Upper}()) == fill(@SVector[1,0], 11) | 385 @test normal(g, CartesianBoundary{1,UpperBoundary}()) == fill(@SVector[1,0], 11) |
242 @test normal(g, CartesianBoundary{2,Lower}()) == fill(@SVector[0,-1], 10) | 386 @test normal(g, CartesianBoundary{2,LowerBoundary}()) == fill(@SVector[0,-1], 10) |
243 @test normal(g, CartesianBoundary{2,Upper}()) ≈ map(boundary_grid(g,CartesianBoundary{2,Upper}())|>logicalgrid) do ξ̄ | 387 @test normal(g, CartesianBoundary{2,UpperBoundary}()) ≈ map(boundary_grid(g,CartesianBoundary{2,UpperBoundary}())|>logicalgrid) do ξ̄ |
244 α = 1-2ξ̄[1] | 388 α = 1-2ξ̄[1] |
245 @SVector[α,1]/√(α^2 + 1) | 389 @SVector[α,1]/√(α^2 + 1) |
246 end | 390 end |
247 | 391 |
248 g = mapped_grid(_fully_curved_mapping()...,5,4) | 392 g = mapped_grid(_fully_curved_mapping()...,5,4) |
249 | 393 |
250 unit(v) = v/norm(v) | 394 unit(v) = v/norm(v) |
251 @testset let bId = CartesianBoundary{1,Lower}() | 395 @testset let bId = CartesianBoundary{1,LowerBoundary}() |
252 lbg = boundary_grid(logicalgrid(g), bId) | 396 lbg = boundary_grid(logicalgrid(g), bId) |
253 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | 397 @test normal(g, bId) ≈ map(lbg) do (ξ, η) |
254 -unit(@SVector[1/2, η/3-1/6]) | 398 -unit(@SVector[1/2, η/3-1/6]) |
255 end | 399 end |
256 end | 400 end |
257 | 401 |
258 @testset let bId = CartesianBoundary{1,Upper}() | 402 @testset let bId = CartesianBoundary{1,UpperBoundary}() |
259 lbg = boundary_grid(logicalgrid(g), bId) | 403 lbg = boundary_grid(logicalgrid(g), bId) |
260 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | 404 @test normal(g, bId) ≈ map(lbg) do (ξ, η) |
261 unit(@SVector[7/2, 2η-1]/(5 + 3η + 2η^2)) | 405 unit(@SVector[7/2, 2η-1]/(5 + 3η + 2η^2)) |
262 end | 406 end |
263 end | 407 end |
264 | 408 |
265 @testset let bId = CartesianBoundary{2,Lower}() | 409 @testset let bId = CartesianBoundary{2,LowerBoundary}() |
266 lbg = boundary_grid(logicalgrid(g), bId) | 410 lbg = boundary_grid(logicalgrid(g), bId) |
267 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | 411 @test normal(g, bId) ≈ map(lbg) do (ξ, η) |
268 -unit(@SVector[-2ξ, 2]/(6 + ξ^2 - 2ξ)) | 412 -unit(@SVector[-2ξ, 2]/(6 + ξ^2 - 2ξ)) |
269 end | 413 end |
270 end | 414 end |
271 | 415 |
272 @testset let bId = CartesianBoundary{2,Upper}() | 416 @testset let bId = CartesianBoundary{2,UpperBoundary}() |
273 lbg = boundary_grid(logicalgrid(g), bId) | 417 lbg = boundary_grid(logicalgrid(g), bId) |
274 @test normal(g, bId) ≈ map(lbg) do (ξ, η) | 418 @test normal(g, bId) ≈ map(lbg) do (ξ, η) |
275 unit(@SVector[-3ξ, 2]/(6 + ξ^2 + 3ξ)) | 419 unit(@SVector[-3ξ, 2]/(6 + ξ^2 + 3ξ)) |
276 end | 420 end |
277 end | 421 end |