Mercurial > repos > public > sbplib_julia
comparison benchmark/benchmarks.jl @ 1751:f3d7e2d7a43f feature/sbp_operators/laplace_curvilinear
Merge feature/grids/manifolds
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 11 Sep 2024 16:26:19 +0200 |
parents | 471a948cd2b2 |
children |
comparison
equal
deleted
inserted
replaced
1731:3684db043add | 1751:f3d7e2d7a43f |
---|---|
1 using BenchmarkTools | 1 using BenchmarkTools |
2 | 2 |
3 using Sbplib | 3 using Diffinitive |
4 using Sbplib.Grids | 4 using Diffinitive.Grids |
5 using Sbplib.SbpOperators | 5 using Diffinitive.SbpOperators |
6 using Sbplib.RegionIndices | 6 using Diffinitive.LazyTensors |
7 using Sbplib.LazyTensors | |
8 | 7 |
9 using LinearAlgebra | 8 using LinearAlgebra |
10 | 9 |
11 const SUITE = BenchmarkGroup() | 10 const SUITE = BenchmarkGroup() |
12 | 11 |
166 H = inner_product(g2, stencil_set) | 165 H = inner_product(g2, stencil_set) |
167 H⁻¹ = inverse_inner_product(g2, stencil_set) | 166 H⁻¹ = inverse_inner_product(g2, stencil_set) |
168 Dxx = second_derivative(g2, stencil_set, 1) | 167 Dxx = second_derivative(g2, stencil_set, 1) |
169 Dyy = second_derivative(g2, stencil_set, 2) | 168 Dyy = second_derivative(g2, stencil_set, 2) |
170 | 169 |
171 e₁ₗ = boundary_restriction(g2, stencil_set, CartesianBoundary{1,Lower}()) | 170 e₁ₗ = boundary_restriction(g2, stencil_set, CartesianBoundary{1,LowerBoundary}()) |
172 e₁ᵤ = boundary_restriction(g2, stencil_set, CartesianBoundary{1,Upper}()) | 171 e₁ᵤ = boundary_restriction(g2, stencil_set, CartesianBoundary{1,UpperBoundary}()) |
173 e₂ₗ = boundary_restriction(g2, stencil_set, CartesianBoundary{2,Lower}()) | 172 e₂ₗ = boundary_restriction(g2, stencil_set, CartesianBoundary{2,LowerBoundary}()) |
174 e₂ᵤ = boundary_restriction(g2, stencil_set, CartesianBoundary{2,Upper}()) | 173 e₂ᵤ = boundary_restriction(g2, stencil_set, CartesianBoundary{2,UpperBoundary}()) |
175 | 174 |
176 d₁ₗ = normal_derivative(g2, stencil_set, CartesianBoundary{1,Lower}()) | 175 d₁ₗ = normal_derivative(g2, stencil_set, CartesianBoundary{1,LowerBoundary}()) |
177 d₁ᵤ = normal_derivative(g2, stencil_set, CartesianBoundary{1,Upper}()) | 176 d₁ᵤ = normal_derivative(g2, stencil_set, CartesianBoundary{1,UpperBoundary}()) |
178 d₂ₗ = normal_derivative(g2, stencil_set, CartesianBoundary{2,Lower}()) | 177 d₂ₗ = normal_derivative(g2, stencil_set, CartesianBoundary{2,LowerBoundary}()) |
179 d₂ᵤ = normal_derivative(g2, stencil_set, CartesianBoundary{2,Upper}()) | 178 d₂ᵤ = normal_derivative(g2, stencil_set, CartesianBoundary{2,UpperBoundary}()) |
180 | 179 |
181 H₁ₗ = inner_product(boundary_grid(g2, CartesianBoundary{1,Lower}()), stencil_set) | 180 H₁ₗ = inner_product(boundary_grid(g2, CartesianBoundary{1,LowerBoundary}()), stencil_set) |
182 H₁ᵤ = inner_product(boundary_grid(g2, CartesianBoundary{1,Upper}()), stencil_set) | 181 H₁ᵤ = inner_product(boundary_grid(g2, CartesianBoundary{1,UpperBoundary}()), stencil_set) |
183 H₂ₗ = inner_product(boundary_grid(g2, CartesianBoundary{2,Lower}()), stencil_set) | 182 H₂ₗ = inner_product(boundary_grid(g2, CartesianBoundary{2,LowerBoundary}()), stencil_set) |
184 H₂ᵤ = inner_product(boundary_grid(g2, CartesianBoundary{2,Upper}()), stencil_set) | 183 H₂ᵤ = inner_product(boundary_grid(g2, CartesianBoundary{2,UpperBoundary}()), stencil_set) |
185 | 184 |
186 SUITE["boundary_terms"]["pre_composition"] = @benchmarkable $u2 .= $(H⁻¹∘e₁ₗ'∘H₁ₗ∘d₁ₗ)*$v2 | 185 SUITE["boundary_terms"]["pre_composition"] = @benchmarkable $u2 .= $(H⁻¹∘e₁ₗ'∘H₁ₗ∘d₁ₗ)*$v2 |
187 SUITE["boundary_terms"]["composition"] = @benchmarkable $u2 .= ($H⁻¹∘$e₁ₗ'∘$H₁ₗ∘$d₁ₗ)*$v2 | 186 SUITE["boundary_terms"]["composition"] = @benchmarkable $u2 .= ($H⁻¹∘$e₁ₗ'∘$H₁ₗ∘$d₁ₗ)*$v2 |
188 SUITE["boundary_terms"]["application"] = @benchmarkable $u2 .= $H⁻¹*$e₁ₗ'*$H₁ₗ* $d₁ₗ*$v2 | 187 SUITE["boundary_terms"]["application"] = @benchmarkable $u2 .= $H⁻¹*$e₁ₗ'*$H₁ₗ* $d₁ₗ*$v2 |
189 # An investigation of these allocations can be found in the branch `allocation_test` | 188 # An investigation of these allocations can be found in the branch `allocation_test` |