Mercurial > repos > public > sbplib_julia
comparison SbpOperators/src/laplace/secondderivative.jl @ 311:f2d6ec89dfc5
Make apply dispatch on Index instead of Tuples of Index
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 09 Sep 2020 21:16:13 +0200 |
parents | 27a0bca5e1f2 |
children | 9cc5d1498b2d |
comparison
equal
deleted
inserted
replaced
310:ece3f6f8a1d4 | 311:f2d6ec89dfc5 |
---|---|
1 """ | 1 """ |
2 SecondDerivative{T<:Real,N,M,K} <: TensorOperator{T,1} | 2 SecondDerivative{T<:Real,N,M,K} <: TensorOperator{T,1} |
3 Implements the Laplace tensor operator `L` with constant grid spacing and coefficients | 3 Implements the Laplace tensor operator `L` with constant grid spacing and coefficients |
4 in 1D dimension | 4 in 1D dimension |
5 """ | 5 """ |
6 struct SecondDerivative{T<:Real,N,M,K} <: TensorOperator{T,1} | 6 |
7 struct SecondDerivative{T,N,M,K} <: TensorOperator{T,1} | |
7 h_inv::T # The grid spacing could be included in the stencil already. Preferable? | 8 h_inv::T # The grid spacing could be included in the stencil already. Preferable? |
8 innerStencil::Stencil{T,N} | 9 innerStencil::Stencil{T,N} |
9 closureStencils::NTuple{M,Stencil{T,K}} | 10 closureStencils::NTuple{M,Stencil{T,K}} |
10 parity::Parity | 11 parity::Parity |
11 #TODO: Write a nice constructor | 12 #TODO: Write a nice constructor |
12 end | 13 end |
13 | 14 export SecondDerivative |
14 @enum Parity begin | |
15 odd = -1 | |
16 even = 1 | |
17 end | |
18 | 15 |
19 LazyTensors.domain_size(D2::SecondDerivative, range_size::NTuple{1,Integer}) = range_size | 16 LazyTensors.domain_size(D2::SecondDerivative, range_size::NTuple{1,Integer}) = range_size |
20 | 17 |
21 @inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T | 18 #TODO: The 1D tensor mappings should not have to dispatch on 1D tuples if we write LazyTensor.apply for vararg right?!?! |
22 return @inbounds apply(D2, v, I[1]) | 19 # Currently have to index the Tuple{Index} in each method in order to call the stencil methods which is ugly. |
20 # I thought I::Vararg{Index,R} fell back to just Index for R = 1 | |
21 | |
22 # Apply for different regions Lower/Interior/Upper or Unknown region | |
23 @inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Lower}) where T | |
24 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(I)], v, Int(I)) | |
23 end | 25 end |
24 | 26 |
25 function LazyTensors.apply_transpose(D2::SecondDerivative{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T = LazyTensors.apply(D2, v, I) | 27 @inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Interior}) where T |
26 | 28 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(I)) |
27 # Apply for different regions Lower/Interior/Upper or Unknown region | |
28 @inline function LazyTensors.apply(D2::SecondDerivative, v::AbstractVector, i::Index{Lower}) | |
29 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(i)], v, Int(i)) | |
30 end | 29 end |
31 | 30 |
32 @inline function LazyTensors.apply(D2::SecondDerivative, v::AbstractVector, i::Index{Interior}) | 31 @inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, I::Index{Upper}) where T |
33 return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(i)) | 32 N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) |
33 return @inbounds D2.h_inv*D2.h_inv*Int(D2.parity)*apply_stencil_backwards(D2.closureStencils[N-Int(I)+1], v, Int(I)) | |
34 end | 34 end |
35 | 35 |
36 @inline function LazyTensors.apply(D2::SecondDerivative, v::AbstractVector, i::Index{Upper}) | 36 @inline function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, index::Index{Unknown}) where T |
37 N = length(v) # TODO: Use domain_size here instead? | 37 N = length(v) # TODO: Use domain_size here instead? |
38 return @inbounds D2.h_inv*D2.h_inv*Int(D2.parity)*apply_stencil_backwards(D2.closureStencils[N-Int(i)+1], v, Int(i)) | 38 r = getregion(Int(index), closuresize(D2), N) |
39 I = Index(Int(index), r) | |
40 return LazyTensors.apply(D2, v, I) | |
39 end | 41 end |
40 | 42 |
41 @inline function LazyTensors.apply(D2::SecondDerivative, v::AbstractVector, index::Index{Unknown}) | 43 |
42 N = length(v) # TODO: Use domain_size here instead? | 44 @inline function LazyTensors.apply_transpose(D2::SecondDerivative, v::AbstractVector, I::Index) |
43 r = getregion(Int(index), closuresize(L), N) | 45 return LazyTensors.apply(D2, v, I) |
44 i = Index(Int(index), r) | |
45 return apply(D2, v, i) | |
46 end | 46 end |
47 | 47 |
48 function closuresize(D2::SecondDerivative{T<:Real,N,M,K}) where {T,N,M,K} | 48 |
49 function closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} | |
49 return M | 50 return M |
50 end | 51 end |