Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/volumeops/derivatives/second_derivative_test.jl @ 1207:f1c2a4fa0ee1 performance/get_region_type_inference
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 03 Feb 2023 22:14:47 +0100 |
parents | c94a12327737 |
children | 7d52c4835d15 |
comparison
equal
deleted
inserted
replaced
919:b41180efb6c2 | 1207:f1c2a4fa0ee1 |
---|---|
4 using Sbplib.Grids | 4 using Sbplib.Grids |
5 using Sbplib.LazyTensors | 5 using Sbplib.LazyTensors |
6 | 6 |
7 import Sbplib.SbpOperators.VolumeOperator | 7 import Sbplib.SbpOperators.VolumeOperator |
8 | 8 |
9 # TODO: Refactor these test to look more like the tests in first_derivative_test.jl. | |
10 | |
9 @testset "SecondDerivative" begin | 11 @testset "SecondDerivative" begin |
10 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 12 operator_path = sbp_operators_path()*"standard_diagonal.toml" |
13 stencil_set = read_stencil_set(operator_path; order=4) | |
11 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 14 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) |
12 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | 15 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) |
13 Lx = 3.5 | 16 Lx = 3.5 |
14 Ly = 3. | 17 Ly = 3. |
15 g_1D = EquidistantGrid(121, 0.0, Lx) | 18 g_1D = EquidistantGrid(121, 0.0, Lx) |
16 g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) | 19 g_2D = EquidistantGrid((121,123), (0.0, 0.0), (Lx, Ly)) |
17 | 20 |
18 @testset "Constructors" begin | 21 @testset "Constructors" begin |
19 @testset "1D" begin | 22 @testset "1D" begin |
20 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | 23 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils,1) |
21 @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils,1) | 24 @test Dₓₓ == second_derivative(g_1D,inner_stencil,closure_stencils) |
25 @test Dₓₓ == second_derivative(g_1D,stencil_set,1) | |
26 @test Dₓₓ == second_derivative(g_1D,stencil_set) | |
22 @test Dₓₓ isa VolumeOperator | 27 @test Dₓₓ isa VolumeOperator |
23 end | 28 end |
24 @testset "2D" begin | 29 @testset "2D" begin |
25 Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1) | 30 Dₓₓ = second_derivative(g_2D,inner_stencil,closure_stencils,1) |
26 D2 = second_derivative(g_1D,inner_stencil,closure_stencils) | 31 D2 = second_derivative(g_1D,inner_stencil,closure_stencils,1) |
27 I = IdentityMapping{Float64}(size(g_2D)[2]) | 32 I = IdentityTensor{Float64}(size(g_2D)[2]) |
28 @test Dₓₓ == D2⊗I | 33 @test Dₓₓ == D2⊗I |
29 @test Dₓₓ isa TensorMapping{T,2,2} where T | 34 @test Dₓₓ == second_derivative(g_2D,stencil_set,1) |
35 @test Dₓₓ isa LazyTensor{T,2,2} where T | |
30 end | 36 end |
31 end | 37 end |
32 | 38 |
33 # Exact differentiation is measured point-wise. In other cases | 39 # Exact differentiation is measured point-wise. In other cases |
34 # the error is measured in the l2-norm. | 40 # the error is measured in the l2-norm. |
45 vₓₓ = evalOn(g_1D,x -> -sin(x)) | 51 vₓₓ = evalOn(g_1D,x -> -sin(x)) |
46 | 52 |
47 # 2nd order interior stencil, 1nd order boundary stencil, | 53 # 2nd order interior stencil, 1nd order boundary stencil, |
48 # implies that L*v should be exact for monomials up to order 2. | 54 # implies that L*v should be exact for monomials up to order 2. |
49 @testset "2nd order" begin | 55 @testset "2nd order" begin |
50 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 56 stencil_set = read_stencil_set(operator_path; order=2) |
51 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 57 Dₓₓ = second_derivative(g_1D,stencil_set) |
52 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
53 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | |
54 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 58 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
55 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 59 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
56 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | 60 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 |
57 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 | 61 @test Dₓₓ*v ≈ vₓₓ rtol = 5e-2 norm = l2 |
58 end | 62 end |
59 | 63 |
60 # 4th order interior stencil, 2nd order boundary stencil, | 64 # 4th order interior stencil, 2nd order boundary stencil, |
61 # implies that L*v should be exact for monomials up to order 3. | 65 # implies that L*v should be exact for monomials up to order 3. |
62 @testset "4th order" begin | 66 @testset "4th order" begin |
63 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 67 stencil_set = read_stencil_set(operator_path; order=4) |
64 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 68 Dₓₓ = second_derivative(g_1D,stencil_set) |
65 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
66 Dₓₓ = second_derivative(g_1D,inner_stencil,closure_stencils) | |
67 # NOTE: high tolerances for checking the "exact" differentiation | 69 # NOTE: high tolerances for checking the "exact" differentiation |
68 # due to accumulation of round-off errors/cancellation errors? | 70 # due to accumulation of round-off errors/cancellation errors? |
69 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 71 @test Dₓₓ*monomials[1] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
70 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 | 72 @test Dₓₓ*monomials[2] ≈ zeros(Float64,size(g_1D)...) atol = 5e-10 |
71 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 | 73 @test Dₓₓ*monomials[3] ≈ monomials[1] atol = 5e-10 |
86 v_yy = evalOn(g_2D,(x,y) -> -cos(y)) | 88 v_yy = evalOn(g_2D,(x,y) -> -cos(y)) |
87 | 89 |
88 # 2nd order interior stencil, 1st order boundary stencil, | 90 # 2nd order interior stencil, 1st order boundary stencil, |
89 # implies that L*v should be exact for binomials up to order 2. | 91 # implies that L*v should be exact for binomials up to order 2. |
90 @testset "2nd order" begin | 92 @testset "2nd order" begin |
91 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 93 stencil_set = read_stencil_set(operator_path; order=2) |
92 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 94 Dyy = second_derivative(g_2D,stencil_set,2) |
93 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
94 Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) | |
95 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 95 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
96 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 96 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
97 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | 97 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 |
98 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 | 98 @test Dyy*v ≈ v_yy rtol = 5e-2 norm = l2 |
99 end | 99 end |
100 | 100 |
101 # 4th order interior stencil, 2nd order boundary stencil, | 101 # 4th order interior stencil, 2nd order boundary stencil, |
102 # implies that L*v should be exact for binomials up to order 3. | 102 # implies that L*v should be exact for binomials up to order 3. |
103 @testset "4th order" begin | 103 @testset "4th order" begin |
104 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 104 stencil_set = read_stencil_set(operator_path; order=4) |
105 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 105 Dyy = second_derivative(g_2D,stencil_set,2) |
106 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | |
107 Dyy = second_derivative(g_2D,inner_stencil,closure_stencils,2) | |
108 # NOTE: high tolerances for checking the "exact" differentiation | 106 # NOTE: high tolerances for checking the "exact" differentiation |
109 # due to accumulation of round-off errors/cancellation errors? | 107 # due to accumulation of round-off errors/cancellation errors? |
110 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 108 @test Dyy*binomials[1] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
111 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 | 109 @test Dyy*binomials[2] ≈ zeros(Float64,size(g_2D)...) atol = 5e-9 |
112 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 | 110 @test Dyy*binomials[3] ≈ evalOn(g_2D,(x,y)->1.) atol = 5e-9 |