Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/volume_operator.jl @ 1207:f1c2a4fa0ee1 performance/get_region_type_inference
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 03 Feb 2023 22:14:47 +0100 |
parents | b41180efb6c2 716e721ce3eb |
children |
comparison
equal
deleted
inserted
replaced
919:b41180efb6c2 | 1207:f1c2a4fa0ee1 |
---|---|
1 """ | 1 """ |
2 volume_operator(grid, inner_stencil, closure_stencils, parity, direction) | 2 VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} |
3 | 3 |
4 Creates a volume operator on a `Dim`-dimensional grid acting along the | |
5 specified coordinate `direction`. The action of the operator is determined by | |
6 the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the | |
7 corresponding `VolumeOperator` tensor mapping is returned. When `Dim>1`, the | |
8 returned operator is the appropriate outer product of a one-dimensional | |
9 operators and `IdentityMapping`s, e.g for `Dim=3` the volume operator in the | |
10 y-direction is `I⊗op⊗I`. | |
11 """ | |
12 function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction) | |
13 #TODO: Check that direction <= Dim? | |
14 | |
15 # Create 1D volume operator in along coordinate direction | |
16 op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity) | |
17 # Create 1D IdentityMappings for each coordinate direction | |
18 one_d_grids = restrict.(Ref(grid), Tuple(1:dimension(grid))) | |
19 Is = IdentityMapping{eltype(grid)}.(size.(one_d_grids)) | |
20 # Formulate the correct outer product sequence of the identity mappings and | |
21 # the volume operator | |
22 parts = Base.setindex(Is, op, direction) | |
23 return foldl(⊗, parts) | |
24 end | |
25 | |
26 """ | |
27 VolumeOperator{T,N,M,K} <: TensorOperator{T,1} | |
28 Implements a one-dimensional constant coefficients volume operator | 4 Implements a one-dimensional constant coefficients volume operator |
29 """ | 5 """ |
30 struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1} | 6 struct VolumeOperator{T,N,M,K} <: LazyTensor{T,1,1} |
31 inner_stencil::Stencil{T,N} | 7 inner_stencil::Stencil{T,N} |
32 closure_stencils::NTuple{M,Stencil{T,K}} | 8 closure_stencils::NTuple{M,Stencil{T,K}} |
33 size::NTuple{1,Int} | 9 size::NTuple{1,Int} |
34 parity::Parity | 10 parity::Parity |
35 end | 11 end |
41 closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M | 17 closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M |
42 | 18 |
43 LazyTensors.range_size(op::VolumeOperator) = op.size | 19 LazyTensors.range_size(op::VolumeOperator) = op.size |
44 LazyTensors.domain_size(op::VolumeOperator) = op.size | 20 LazyTensors.domain_size(op::VolumeOperator) = op.size |
45 | 21 |
46 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Lower}) where T | 22 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Lower}) |
47 return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) | 23 return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) |
48 end | 24 end |
49 | 25 |
50 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Interior}) where T | 26 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Interior}) |
51 return apply_stencil(op.inner_stencil, v, Int(i)) | 27 return apply_stencil(op.inner_stencil, v, Int(i)) |
52 end | 28 end |
53 | 29 |
54 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Upper}) where T | 30 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Upper}) |
55 return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i)) | 31 return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i)) |
56 end | 32 end |
57 | 33 |
58 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i) where T | 34 function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i) |
59 return LazyTensors.apply_with_region(op, v, closure_size(op), op.size[1], i) | 35 return LazyTensors.apply_with_region(op, v, closure_size(op), op.size[1], i) |
60 end | 36 end |
37 # TODO: Move this to LazyTensors when we have the region communication down. |