comparison src/Grids/equidistant_grid.jl @ 1888:eb70a0941cd6 allocation_testing

Merge default
author Jonatan Werpers <jonatan@werpers.com>
date Fri, 03 Feb 2023 23:02:46 +0100
parents dfbd62c7eb09
children 9275d95e2d90 102ebdaf7c11
comparison
equal deleted inserted replaced
1887:24590890e124 1888:eb70a0941cd6
1
2 """
3 EquidistantGrid{Dim,T<:Real} <: Grid
4
5 `Dim`-dimensional equidistant grid with coordinates of type `T`.
6 """
7 struct EquidistantGrid{Dim,T<:Real} <: Grid
8 size::NTuple{Dim, Int}
9 limit_lower::NTuple{Dim, T}
10 limit_upper::NTuple{Dim, T}
11
12 function EquidistantGrid{Dim,T}(size::NTuple{Dim, Int}, limit_lower::NTuple{Dim, T}, limit_upper::NTuple{Dim, T}) where {Dim,T}
13 if any(size .<= 0)
14 throw(DomainError("all components of size must be postive"))
15 end
16 if any(limit_upper.-limit_lower .<= 0)
17 throw(DomainError("all side lengths must be postive"))
18 end
19 return new{Dim,T}(size, limit_lower, limit_upper)
20 end
21 end
22
23
24 """
25 EquidistantGrid(size, limit_lower, limit_upper)
26
27 Construct an equidistant grid with corners at the coordinates `limit_lower` and
28 `limit_upper`.
29
30 The length of the domain sides are given by the components of
31 `limit_upper-limit_lower`. E.g for a 2D grid with `limit_lower=(-1,0)` and `limit_upper=(1,2)` the domain is defined
32 as `(-1,1)x(0,2)`. The side lengths of the grid are not allowed to be negative.
33
34 The number of equidistantly spaced points in each coordinate direction are given
35 by the tuple `size`.
36 """
37 function EquidistantGrid(size, limit_lower, limit_upper)
38 return EquidistantGrid{length(size), eltype(limit_lower)}(size, limit_lower, limit_upper)
39 end
40
41
42 """
43 EquidistantGrid{T}()
44
45 Constructs a 0-dimensional grid.
46 """
47 EquidistantGrid{T}() where T = EquidistantGrid{0,T}((),(),()) # Convenience constructor for 0-dim grid
48
49
50 """
51 EquidistantGrid(size::Int, limit_lower::T, limit_upper::T)
52
53 Convenience constructor for 1D grids.
54 """
55 function EquidistantGrid(size::Int, limit_lower::T, limit_upper::T) where T
56 return EquidistantGrid((size,),(limit_lower,),(limit_upper,))
57 end
58
59 Base.eltype(grid::EquidistantGrid{Dim,T}) where {Dim,T} = T
60
61 Base.eachindex(grid::EquidistantGrid) = CartesianIndices(grid.size)
62
63 Base.size(g::EquidistantGrid) = g.size
64
65 Base.ndims(::EquidistantGrid{Dim}) where Dim = Dim
66
67
68
69
70
71 """
72 spacing(grid::EquidistantGrid)
73
74 The spacing between grid points.
75 """
76 spacing(grid::EquidistantGrid) = (grid.limit_upper.-grid.limit_lower)./(grid.size.-1)
77
78
79 """
80 inverse_spacing(grid::EquidistantGrid)
81
82 The reciprocal of the spacing between grid points.
83 """
84 inverse_spacing(grid::EquidistantGrid) = 1 ./ spacing(grid)
85
86
87 """
88 points(grid::EquidistantGrid)
89
90 The point of the grid as an array of tuples with the same dimension as the grid.
91 The points are stored as [(x1,y1), (x1,y2), … (x1,yn);
92 (x2,y1), (x2,y2), … (x2,yn);
93 ⋮ ⋮ ⋮
94 (xm,y1), (xm,y2), … (xm,yn)]
95 """
96 function points(grid::EquidistantGrid)
97 indices = Tuple.(CartesianIndices(grid.size))
98 h = spacing(grid)
99 return broadcast(I -> grid.limit_lower .+ (I.-1).*h, indices)
100 end
101
102
103 """
104 restrict(::EquidistantGrid, dim)
105
106 Pick out given dimensions from the grid and return a grid for them.
107 """
108 function restrict(grid::EquidistantGrid, dim)
109 size = grid.size[dim]
110 limit_lower = grid.limit_lower[dim]
111 limit_upper = grid.limit_upper[dim]
112
113 return EquidistantGrid(size, limit_lower, limit_upper)
114 end
115
116
117 """
118 orthogonal_dims(grid::EquidistantGrid,dim)
119
120 Returns the dimensions of grid orthogonal to that of dim.
121 """
122 function orthogonal_dims(grid::EquidistantGrid, dim)
123 orth_dims = filter(i -> i != dim, dims(grid))
124 if orth_dims == dims(grid)
125 throw(DomainError(string("dimension ",string(dim)," not matching grid")))
126 end
127 return orth_dims
128 end
129
130
131 """
132 boundary_identifiers(::EquidistantGrid)
133
134 Returns a tuple containing the boundary identifiers for the grid, stored as
135 (CartesianBoundary(1,Lower),
136 CartesianBoundary(1,Upper),
137 CartesianBoundary(2,Lower),
138 ...)
139 """
140 boundary_identifiers(g::EquidistantGrid) = (((ntuple(i->(CartesianBoundary{i,Lower}(),CartesianBoundary{i,Upper}()),ndims(g)))...)...,)
141
142
143 """
144 boundary_grid(grid::EquidistantGrid, id::CartesianBoundary)
145
146 Creates the lower-dimensional restriciton of `grid` spanned by the dimensions
147 orthogonal to the boundary specified by `id`. The boundary grid of a 1-dimensional
148 grid is a zero-dimensional grid.
149 """
150 function boundary_grid(grid::EquidistantGrid, id::CartesianBoundary)
151 orth_dims = orthogonal_dims(grid, dim(id))
152 return restrict(grid, orth_dims)
153 end
154 boundary_grid(::EquidistantGrid{1,T},::CartesianBoundary{1}) where T = EquidistantGrid{T}()
155
156
157 """
158 refine(grid::EquidistantGrid, r::Int)
159
160 Refines `grid` by a factor `r`. The factor is applied to the number of
161 intervals which is 1 less than the size of the grid.
162
163 See also: [`coarsen`](@ref)
164 """
165 function refine(grid::EquidistantGrid, r::Int)
166 sz = size(grid)
167 new_sz = (sz .- 1).*r .+ 1
168 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper)
169 end
170
171
172 """
173 coarsen(grid::EquidistantGrid, r::Int)
174
175 Coarsens `grid` by a factor `r`. The factor is applied to the number of
176 intervals which is 1 less than the size of the grid. If the number of
177 intervals are not divisible by `r` an error is raised.
178
179 See also: [`refine`](@ref)
180 """
181 function coarsen(grid::EquidistantGrid, r::Int)
182 sz = size(grid)
183
184 if !all(n -> (n % r == 0), sz.-1)
185 throw(DomainError(r, "Size minus 1 must be divisible by the ratio."))
186 end
187
188 new_sz = (sz .- 1).÷r .+ 1
189
190 return EquidistantGrid{ndims(grid), eltype(grid)}(new_sz, grid.limit_lower, grid.limit_upper)
191 end