Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/boundaryops/boundary_operator.jl @ 610:e40e7439d1b4 feature/volume_and_boundary_operators
Add a general boundary operator and make BoundaryRestriction a specialization of it.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 05 Dec 2020 18:12:31 +0100 |
parents | |
children | 332f65c1abf3 |
comparison
equal
deleted
inserted
replaced
606:8f9b3eac128a | 610:e40e7439d1b4 |
---|---|
1 """ | |
2 boundary_operator(grid,closure_stencil,boundary) | |
3 | |
4 Creates a boundary operator on a `Dim`-dimensional grid for the | |
5 specified `boundary`. The action of the operator is determined by `closure_stencil`. | |
6 | |
7 When `Dim=1`, the corresponding `BoundaryOperator` tensor mapping is returned. | |
8 When `Dim>1`, the `BoundaryOperator` `op` is inflated by the outer product | |
9 of `IdentityMappings` in orthogonal coordinate directions, e.g for `Dim=3`, | |
10 the boundary restriction operator in the y-direction direction is `Ix⊗op⊗Iz`. | |
11 """ | |
12 function boundary_operator(grid::EquidistantGrid{Dim,T}, closure_stencil::Stencil{T}, boundary::CartesianBoundary) where {Dim,T} | |
13 # Create 1D boundary operator | |
14 r = region(boundary) | |
15 d = dim(boundary) | |
16 op = BoundaryOperator(restrict(grid, d), closure_stencil, r) | |
17 | |
18 # Create 1D IdentityMappings for each coordinate direction | |
19 one_d_grids = restrict.(Ref(grid), Tuple(1:Dim)) | |
20 Is = IdentityMapping{T}.(size.(one_d_grids)) | |
21 | |
22 # Formulate the correct outer product sequence of the identity mappings and | |
23 # the boundary operator | |
24 parts = Base.setindex(Is, op, d) | |
25 return foldl(⊗, parts) | |
26 end | |
27 export boundary_operator | |
28 | |
29 """ | |
30 BoundaryOperator{T,R,N} <: TensorMapping{T,0,1} | |
31 | |
32 Implements the boundary operator `op` for 1D as a `TensorMapping` | |
33 | |
34 `op` is the restriction of a grid function to the boundary using some closure `Stencil{T,N}`. | |
35 The boundary to restrict to is determined by `R`. | |
36 `op'` is the prolongation of a zero dimensional array to the whole grid using the same closure stencil. | |
37 """ | |
38 struct BoundaryOperator{T,R<:Region,N} <: TensorMapping{T,0,1} | |
39 stencil::Stencil{T,N} | |
40 size::Int | |
41 end | |
42 export BoundaryOperator | |
43 | |
44 BoundaryOperator{R}(stencil::Stencil{T,N}, size::Int) where {T,R,N} = BoundaryOperator{T,R,N}(stencil, size) | |
45 | |
46 """ | |
47 BoundaryOperator(grid::EquidistantGrid{1}, closure_stencil, region) | |
48 | |
49 Constructs the BoundaryOperator with stencil `closure_stencil` for a one-dimensional `grid`, restricting to | |
50 to the boundary specified by `region`. | |
51 """ | |
52 function BoundaryOperator(grid::EquidistantGrid{1}, closure_stencil::Stencil{T,N}, region::Region) where {T,N} | |
53 return BoundaryOperator{T,typeof(region),N}(closure_stencil,size(grid)[1]) | |
54 end | |
55 | |
56 """ | |
57 closure_size(::BoundaryOperator) | |
58 The size of the closure stencil. | |
59 """ | |
60 closure_size(::BoundaryOperator{T,R,N}) where {T,R,N} = N | |
61 | |
62 LazyTensors.range_size(op::BoundaryOperator) = () | |
63 LazyTensors.domain_size(op::BoundaryOperator) = (op.size,) | |
64 | |
65 function LazyTensors.apply(op::BoundaryOperator{T,Lower}, v::AbstractVector{T}) where T | |
66 apply_stencil(op.stencil,v,1) | |
67 end | |
68 | |
69 function LazyTensors.apply(op::BoundaryOperator{T,Upper}, v::AbstractVector{T}) where T | |
70 apply_stencil_backwards(op.stencil,v,op.size) | |
71 end | |
72 | |
73 function LazyTensors.apply_transpose(op::BoundaryOperator{T,Lower}, v::AbstractArray{T,0}, i::Index{Lower}) where T | |
74 return op.stencil[Int(i)-1]*v[] | |
75 end | |
76 | |
77 function LazyTensors.apply_transpose(op::BoundaryOperator{T,Upper}, v::AbstractArray{T,0}, i::Index{Upper}) where T | |
78 return op.stencil[op.size[1] - Int(i)]*v[] | |
79 end | |
80 | |
81 # Catch all combinations of Lower, Upper and Interior not caught by the two previous methods. | |
82 function LazyTensors.apply_transpose(op::BoundaryOperator{T}, v::AbstractArray{T,0}, i::Index) where T | |
83 return zero(T) | |
84 end | |
85 | |
86 function LazyTensors.apply_transpose(op::BoundaryOperator{T}, v::AbstractArray{T,0}, i) where T | |
87 r = getregion(i, closure_size(op), op.size) | |
88 apply_transpose(op, v, Index(i,r)) | |
89 end |