Mercurial > repos > public > sbplib_julia
comparison test/testDiffOps.jl @ 357:e22b061f5299 refactor/remove_dynamic_size_tensormapping
Merge in default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 28 Sep 2020 21:54:33 +0200 |
parents | ffddaf053085 |
children | cc86b920531a |
comparison
equal
deleted
inserted
replaced
356:0844069ab5ff | 357:e22b061f5299 |
---|---|
4 using Sbplib.SbpOperators | 4 using Sbplib.SbpOperators |
5 using Sbplib.RegionIndices | 5 using Sbplib.RegionIndices |
6 using Sbplib.LazyTensors | 6 using Sbplib.LazyTensors |
7 | 7 |
8 @testset "DiffOps" begin | 8 @testset "DiffOps" begin |
9 | 9 # |
10 @testset "Laplace2D" begin | 10 # @testset "BoundaryValue" begin |
11 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 11 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
12 Lx = 3.5 | 12 # g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) |
13 Ly = 7.2 | 13 # |
14 g = EquidistantGrid((42,41), (0.0, 0.0), (Lx,Ly)) | 14 # e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) |
15 L = Laplace(g, 1., op) | 15 # e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) |
16 H = quadrature(L) | 16 # e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) |
17 | 17 # e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) |
18 f0(x::Float64,y::Float64) = 2. | 18 # |
19 f1(x::Float64,y::Float64) = x+y | 19 # v = zeros(Float64, 4, 5) |
20 f2(x::Float64,y::Float64) = 1/2*x^2 + 1/2*y^2 | 20 # v[:,5] = [1, 2, 3,4] |
21 f3(x::Float64,y::Float64) = 1/6*x^3 + 1/6*y^3 | 21 # v[:,4] = [1, 2, 3,4] |
22 f4(x::Float64,y::Float64) = 1/24*x^4 + 1/24*y^4 | 22 # v[:,3] = [4, 5, 6, 7] |
23 f5(x::Float64,y::Float64) = sin(x) + cos(y) | 23 # v[:,2] = [7, 8, 9, 10] |
24 f5ₓₓ(x::Float64,y::Float64) = -f5(x,y) | 24 # v[:,1] = [10, 11, 12, 13] |
25 | 25 # |
26 v0 = evalOn(g,f0) | 26 # @test e_w isa TensorMapping{T,2,1} where T |
27 v1 = evalOn(g,f1) | 27 # @test e_w' isa TensorMapping{T,1,2} where T |
28 v2 = evalOn(g,f2) | 28 # |
29 v3 = evalOn(g,f3) | 29 # @test domain_size(e_w, (3,2)) == (2,) |
30 v4 = evalOn(g,f4) | 30 # @test domain_size(e_e, (3,2)) == (2,) |
31 v5 = evalOn(g,f5) | 31 # @test domain_size(e_s, (3,2)) == (3,) |
32 v5ₓₓ = evalOn(g,f5ₓₓ) | 32 # @test domain_size(e_n, (3,2)) == (3,) |
33 | 33 # |
34 @test L isa TensorOperator{T,2} where T | 34 # @test size(e_w'*v) == (5,) |
35 @test L' isa TensorMapping{T,2,2} where T | 35 # @test size(e_e'*v) == (5,) |
36 | 36 # @test size(e_s'*v) == (4,) |
37 # TODO: Should perhaps set tolerance level for isapporx instead? | 37 # @test size(e_n'*v) == (4,) |
38 # Are these tolerance levels resonable or should tests be constructed | 38 # |
39 # differently? | 39 # @test collect(e_w'*v) == [10,7,4,1.0,1] |
40 equalitytol = 0.5*1e-10 | 40 # @test collect(e_e'*v) == [13,10,7,4,4.0] |
41 accuracytol = 0.5*1e-3 | 41 # @test collect(e_s'*v) == [10,11,12,13.0] |
42 # 4th order interior stencil, 2nd order boundary stencil, | 42 # @test collect(e_n'*v) == [1,2,3,4.0] |
43 # implies that L*v should be exact for v - monomial up to order 3. | 43 # |
44 # Exact differentiation is measured point-wise. For other grid functions | 44 # g_x = [1,2,3,4.0] |
45 # the error is measured in the H-norm. | 45 # g_y = [5,4,3,2,1.0] |
46 @test all(abs.(collect(L*v0)) .<= equalitytol) | 46 # |
47 @test all(abs.(collect(L*v1)) .<= equalitytol) | 47 # G_w = zeros(Float64, (4,5)) |
48 @test all(collect(L*v2) .≈ v0) # Seems to be more accurate | 48 # G_w[1,:] = g_y |
49 @test all(abs.((collect(L*v3) - v1)) .<= equalitytol) | 49 # |
50 e4 = collect(L*v4) - v2 | 50 # G_e = zeros(Float64, (4,5)) |
51 e5 = collect(L*v5) - v5ₓₓ | 51 # G_e[4,:] = g_y |
52 @test sum(collect(H*e4.^2)) <= accuracytol | 52 # |
53 @test sum(collect(H*e5.^2)) <= accuracytol | 53 # G_s = zeros(Float64, (4,5)) |
54 end | 54 # G_s[:,1] = g_x |
55 | 55 # |
56 @testset "Quadrature" begin | 56 # G_n = zeros(Float64, (4,5)) |
57 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 57 # G_n[:,5] = g_x |
58 Lx = 2.3 | 58 # |
59 Ly = 5.2 | 59 # @test size(e_w*g_y) == (UnknownDim,5) |
60 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | 60 # @test size(e_e*g_y) == (UnknownDim,5) |
61 H = Quadrature(op,g) | 61 # @test size(e_s*g_x) == (4,UnknownDim) |
62 v = ones(Float64, size(g)) | 62 # @test size(e_n*g_x) == (4,UnknownDim) |
63 | 63 # |
64 @test H isa TensorOperator{T,2} where T | 64 # # These tests should be moved to where they are possible (i.e we know what the grid should be) |
65 @test H' isa TensorMapping{T,2,2} where T | 65 # @test_broken collect(e_w*g_y) == G_w |
66 @test sum(collect(H*v)) ≈ (Lx*Ly) | 66 # @test_broken collect(e_e*g_y) == G_e |
67 @test collect(H*v) == collect(H'*v) | 67 # @test_broken collect(e_s*g_x) == G_s |
68 end | 68 # @test_broken collect(e_n*g_x) == G_n |
69 | 69 # end |
70 @testset "InverseQuadrature" begin | 70 # |
71 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 71 # @testset "NormalDerivative" begin |
72 Lx = 7.3 | 72 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
73 Ly = 8.2 | 73 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) |
74 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) | 74 # |
75 H = Quadrature(op,g) | 75 # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) |
76 Hinv = InverseQuadrature(op,g) | 76 # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) |
77 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | 77 # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) |
78 | 78 # d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) |
79 @test Hinv isa TensorOperator{T,2} where T | 79 # |
80 @test Hinv' isa TensorMapping{T,2,2} where T | 80 # |
81 @test collect(Hinv*H*v) ≈ v | 81 # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) |
82 @test collect(Hinv*v) == collect(Hinv'*v) | 82 # v∂x = evalOn(g, (x,y)-> 2*x + y) |
83 end | 83 # v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) |
84 | 84 # |
85 @testset "BoundaryValue" begin | 85 # @test d_w isa TensorMapping{T,2,1} where T |
86 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 86 # @test d_w' isa TensorMapping{T,1,2} where T |
87 g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) | 87 # |
88 | 88 # @test domain_size(d_w, (3,2)) == (2,) |
89 e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) | 89 # @test domain_size(d_e, (3,2)) == (2,) |
90 e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) | 90 # @test domain_size(d_s, (3,2)) == (3,) |
91 e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) | 91 # @test domain_size(d_n, (3,2)) == (3,) |
92 e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) | 92 # |
93 | 93 # @test size(d_w'*v) == (6,) |
94 v = zeros(Float64, 4, 5) | 94 # @test size(d_e'*v) == (6,) |
95 v[:,5] = [1, 2, 3,4] | 95 # @test size(d_s'*v) == (5,) |
96 v[:,4] = [1, 2, 3,4] | 96 # @test size(d_n'*v) == (5,) |
97 v[:,3] = [4, 5, 6, 7] | 97 # |
98 v[:,2] = [7, 8, 9, 10] | 98 # @test collect(d_w'*v) ≈ v∂x[1,:] |
99 v[:,1] = [10, 11, 12, 13] | 99 # @test collect(d_e'*v) ≈ v∂x[5,:] |
100 | 100 # @test collect(d_s'*v) ≈ v∂y[:,1] |
101 @test e_w isa TensorMapping{T,2,1} where T | 101 # @test collect(d_n'*v) ≈ v∂y[:,6] |
102 @test e_w' isa TensorMapping{T,1,2} where T | 102 # |
103 | 103 # |
104 @test domain_size(e_w, (3,2)) == (2,) | 104 # d_x_l = zeros(Float64, 5) |
105 @test domain_size(e_e, (3,2)) == (2,) | 105 # d_x_u = zeros(Float64, 5) |
106 @test domain_size(e_s, (3,2)) == (3,) | 106 # for i ∈ eachindex(d_x_l) |
107 @test domain_size(e_n, (3,2)) == (3,) | 107 # d_x_l[i] = op.dClosure[i-1] |
108 | 108 # d_x_u[i] = -op.dClosure[length(d_x_u)-i] |
109 @test size(e_w'*v) == (5,) | 109 # end |
110 @test size(e_e'*v) == (5,) | 110 # |
111 @test size(e_s'*v) == (4,) | 111 # d_y_l = zeros(Float64, 6) |
112 @test size(e_n'*v) == (4,) | 112 # d_y_u = zeros(Float64, 6) |
113 | 113 # for i ∈ eachindex(d_y_l) |
114 @test collect(e_w'*v) == [10,7,4,1.0,1] | 114 # d_y_l[i] = op.dClosure[i-1] |
115 @test collect(e_e'*v) == [13,10,7,4,4.0] | 115 # d_y_u[i] = -op.dClosure[length(d_y_u)-i] |
116 @test collect(e_s'*v) == [10,11,12,13.0] | 116 # end |
117 @test collect(e_n'*v) == [1,2,3,4.0] | 117 # |
118 | 118 # function prod_matrix(x,y) |
119 g_x = [1,2,3,4.0] | 119 # G = zeros(Float64, length(x), length(y)) |
120 g_y = [5,4,3,2,1.0] | 120 # for I ∈ CartesianIndices(G) |
121 | 121 # G[I] = x[I[1]]*y[I[2]] |
122 G_w = zeros(Float64, (4,5)) | 122 # end |
123 G_w[1,:] = g_y | 123 # |
124 | 124 # return G |
125 G_e = zeros(Float64, (4,5)) | 125 # end |
126 G_e[4,:] = g_y | 126 # |
127 | 127 # g_x = [1,2,3,4.0,5] |
128 G_s = zeros(Float64, (4,5)) | 128 # g_y = [5,4,3,2,1.0,11] |
129 G_s[:,1] = g_x | 129 # |
130 | 130 # G_w = prod_matrix(d_x_l, g_y) |
131 G_n = zeros(Float64, (4,5)) | 131 # G_e = prod_matrix(d_x_u, g_y) |
132 G_n[:,5] = g_x | 132 # G_s = prod_matrix(g_x, d_y_l) |
133 | 133 # G_n = prod_matrix(g_x, d_y_u) |
134 @test size(e_w*g_y) == (UnknownDim,5) | 134 # |
135 @test size(e_e*g_y) == (UnknownDim,5) | 135 # |
136 @test size(e_s*g_x) == (4,UnknownDim) | 136 # @test size(d_w*g_y) == (UnknownDim,6) |
137 @test size(e_n*g_x) == (4,UnknownDim) | 137 # @test size(d_e*g_y) == (UnknownDim,6) |
138 | 138 # @test size(d_s*g_x) == (5,UnknownDim) |
139 # These tests should be moved to where they are possible (i.e we know what the grid should be) | 139 # @test size(d_n*g_x) == (5,UnknownDim) |
140 @test_broken collect(e_w*g_y) == G_w | 140 # |
141 @test_broken collect(e_e*g_y) == G_e | 141 # # These tests should be moved to where they are possible (i.e we know what the grid should be) |
142 @test_broken collect(e_s*g_x) == G_s | 142 # @test_broken collect(d_w*g_y) ≈ G_w |
143 @test_broken collect(e_n*g_x) == G_n | 143 # @test_broken collect(d_e*g_y) ≈ G_e |
144 end | 144 # @test_broken collect(d_s*g_x) ≈ G_s |
145 | 145 # @test_broken collect(d_n*g_x) ≈ G_n |
146 @testset "NormalDerivative" begin | 146 # end |
147 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 147 # |
148 g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) | 148 # @testset "BoundaryQuadrature" begin |
149 | 149 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
150 d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) | 150 # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) |
151 d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) | 151 # |
152 d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) | 152 # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) |
153 d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) | 153 # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) |
154 | 154 # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) |
155 | 155 # H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) |
156 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | 156 # |
157 v∂x = evalOn(g, (x,y)-> 2*x + y) | 157 # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) |
158 v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) | 158 # |
159 | 159 # function get_quadrature(N) |
160 @test d_w isa TensorMapping{T,2,1} where T | 160 # qc = op.quadratureClosure |
161 @test d_w' isa TensorMapping{T,1,2} where T | 161 # q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) |
162 | 162 # @assert length(q) == N |
163 @test domain_size(d_w, (3,2)) == (2,) | 163 # return q |
164 @test domain_size(d_e, (3,2)) == (2,) | 164 # end |
165 @test domain_size(d_s, (3,2)) == (3,) | 165 # |
166 @test domain_size(d_n, (3,2)) == (3,) | 166 # v_w = v[1,:] |
167 | 167 # v_e = v[10,:] |
168 @test size(d_w'*v) == (6,) | 168 # v_s = v[:,1] |
169 @test size(d_e'*v) == (6,) | 169 # v_n = v[:,11] |
170 @test size(d_s'*v) == (5,) | 170 # |
171 @test size(d_n'*v) == (5,) | 171 # q_x = spacing(g)[1].*get_quadrature(10) |
172 | 172 # q_y = spacing(g)[2].*get_quadrature(11) |
173 @test collect(d_w'*v) ≈ v∂x[1,:] | 173 # |
174 @test collect(d_e'*v) ≈ v∂x[5,:] | 174 # @test H_w isa TensorOperator{T,1} where T |
175 @test collect(d_s'*v) ≈ v∂y[:,1] | 175 # |
176 @test collect(d_n'*v) ≈ v∂y[:,6] | 176 # @test domain_size(H_w, (3,)) == (3,) |
177 | 177 # @test domain_size(H_n, (3,)) == (3,) |
178 | 178 # |
179 d_x_l = zeros(Float64, 5) | 179 # @test range_size(H_w, (3,)) == (3,) |
180 d_x_u = zeros(Float64, 5) | 180 # @test range_size(H_n, (3,)) == (3,) |
181 for i ∈ eachindex(d_x_l) | 181 # |
182 d_x_l[i] = op.dClosure[i-1] | 182 # @test size(H_w*v_w) == (11,) |
183 d_x_u[i] = -op.dClosure[length(d_x_u)-i] | 183 # @test size(H_e*v_e) == (11,) |
184 end | 184 # @test size(H_s*v_s) == (10,) |
185 | 185 # @test size(H_n*v_n) == (10,) |
186 d_y_l = zeros(Float64, 6) | 186 # |
187 d_y_u = zeros(Float64, 6) | 187 # @test collect(H_w*v_w) ≈ q_y.*v_w |
188 for i ∈ eachindex(d_y_l) | 188 # @test collect(H_e*v_e) ≈ q_y.*v_e |
189 d_y_l[i] = op.dClosure[i-1] | 189 # @test collect(H_s*v_s) ≈ q_x.*v_s |
190 d_y_u[i] = -op.dClosure[length(d_y_u)-i] | 190 # @test collect(H_n*v_n) ≈ q_x.*v_n |
191 end | 191 # |
192 | 192 # @test collect(H_w'*v_w) == collect(H_w'*v_w) |
193 function prod_matrix(x,y) | 193 # @test collect(H_e'*v_e) == collect(H_e'*v_e) |
194 G = zeros(Float64, length(x), length(y)) | 194 # @test collect(H_s'*v_s) == collect(H_s'*v_s) |
195 for I ∈ CartesianIndices(G) | 195 # @test collect(H_n'*v_n) == collect(H_n'*v_n) |
196 G[I] = x[I[1]]*y[I[2]] | 196 # end |
197 end | |
198 | |
199 return G | |
200 end | |
201 | |
202 g_x = [1,2,3,4.0,5] | |
203 g_y = [5,4,3,2,1.0,11] | |
204 | |
205 G_w = prod_matrix(d_x_l, g_y) | |
206 G_e = prod_matrix(d_x_u, g_y) | |
207 G_s = prod_matrix(g_x, d_y_l) | |
208 G_n = prod_matrix(g_x, d_y_u) | |
209 | |
210 | |
211 @test size(d_w*g_y) == (UnknownDim,6) | |
212 @test size(d_e*g_y) == (UnknownDim,6) | |
213 @test size(d_s*g_x) == (5,UnknownDim) | |
214 @test size(d_n*g_x) == (5,UnknownDim) | |
215 | |
216 # These tests should be moved to where they are possible (i.e we know what the grid should be) | |
217 @test_broken collect(d_w*g_y) ≈ G_w | |
218 @test_broken collect(d_e*g_y) ≈ G_e | |
219 @test_broken collect(d_s*g_x) ≈ G_s | |
220 @test_broken collect(d_n*g_x) ≈ G_n | |
221 end | |
222 | |
223 @testset "BoundaryQuadrature" begin | |
224 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
225 g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) | |
226 | |
227 H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) | |
228 H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) | |
229 H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) | |
230 H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) | |
231 | |
232 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
233 | |
234 function get_quadrature(N) | |
235 qc = op.quadratureClosure | |
236 q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) | |
237 @assert length(q) == N | |
238 return q | |
239 end | |
240 | |
241 v_w = v[1,:] | |
242 v_e = v[10,:] | |
243 v_s = v[:,1] | |
244 v_n = v[:,11] | |
245 | |
246 q_x = spacing(g)[1].*get_quadrature(10) | |
247 q_y = spacing(g)[2].*get_quadrature(11) | |
248 | |
249 @test H_w isa TensorOperator{T,1} where T | |
250 | |
251 @test domain_size(H_w, (3,)) == (3,) | |
252 @test domain_size(H_n, (3,)) == (3,) | |
253 | |
254 @test range_size(H_w, (3,)) == (3,) | |
255 @test range_size(H_n, (3,)) == (3,) | |
256 | |
257 @test size(H_w*v_w) == (11,) | |
258 @test size(H_e*v_e) == (11,) | |
259 @test size(H_s*v_s) == (10,) | |
260 @test size(H_n*v_n) == (10,) | |
261 | |
262 @test collect(H_w*v_w) ≈ q_y.*v_w | |
263 @test collect(H_e*v_e) ≈ q_y.*v_e | |
264 @test collect(H_s*v_s) ≈ q_x.*v_s | |
265 @test collect(H_n*v_n) ≈ q_x.*v_n | |
266 | |
267 @test collect(H_w'*v_w) == collect(H_w'*v_w) | |
268 @test collect(H_e'*v_e) == collect(H_e'*v_e) | |
269 @test collect(H_s'*v_s) == collect(H_s'*v_s) | |
270 @test collect(H_n'*v_n) == collect(H_n'*v_n) | |
271 end | |
272 | 197 |
273 end | 198 end |