Mercurial > repos > public > sbplib_julia
comparison test/LazyTensors/LazyTensors_test.jl @ 711:df88aee35bb9 feature/selectable_tests
Switch to _test.jl suffix
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 20 Feb 2021 20:45:40 +0100 |
parents | test/LazyTensors/testLazyTensors.jl@44fa9a171557 |
children |
comparison
equal
deleted
inserted
replaced
710:44fa9a171557 | 711:df88aee35bb9 |
---|---|
1 using Test | |
2 using Sbplib.LazyTensors | |
3 using Sbplib.RegionIndices | |
4 | |
5 using Tullio | |
6 | |
7 @testset "LazyTensors" begin | |
8 | |
9 @testset "Generic Mapping methods" begin | |
10 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | |
11 LazyTensors.apply(m::DummyMapping{T,R,D}, v, I::Vararg{Any,R}) where {T,R,D} = :apply | |
12 @test range_dim(DummyMapping{Int,2,3}()) == 2 | |
13 @test domain_dim(DummyMapping{Int,2,3}()) == 3 | |
14 @test apply(DummyMapping{Int,2,3}(), zeros(Int, (0,0,0)),0,0) == :apply | |
15 @test eltype(DummyMapping{Int,2,3}()) == Int | |
16 @test eltype(DummyMapping{Float64,2,3}()) == Float64 | |
17 end | |
18 | |
19 @testset "Mapping transpose" begin | |
20 struct DummyMapping{T,R,D} <: TensorMapping{T,R,D} end | |
21 | |
22 LazyTensors.apply(m::DummyMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = :apply | |
23 LazyTensors.apply_transpose(m::DummyMapping{T,R,D}, v, I::Vararg{Any,D}) where {T,R,D} = :apply_transpose | |
24 | |
25 LazyTensors.range_size(m::DummyMapping) = :range_size | |
26 LazyTensors.domain_size(m::DummyMapping) = :domain_size | |
27 | |
28 m = DummyMapping{Float64,2,3}() | |
29 @test m' isa TensorMapping{Float64, 3,2} | |
30 @test m'' == m | |
31 @test apply(m',zeros(Float64,(0,0)), 0, 0, 0) == :apply_transpose | |
32 @test apply(m'',zeros(Float64,(0,0,0)), 0, 0) == :apply | |
33 @test apply_transpose(m', zeros(Float64,(0,0,0)), 0, 0) == :apply | |
34 | |
35 @test range_size(m') == :domain_size | |
36 @test domain_size(m') == :range_size | |
37 end | |
38 | |
39 @testset "TensorApplication" begin | |
40 struct SizeDoublingMapping{T,R,D} <: TensorMapping{T,R,D} | |
41 domain_size::NTuple{D,Int} | |
42 end | |
43 | |
44 LazyTensors.apply(m::SizeDoublingMapping{T,R}, v, i::Vararg{Any,R}) where {T,R} = (:apply,v,i) | |
45 LazyTensors.range_size(m::SizeDoublingMapping) = 2 .* m.domain_size | |
46 LazyTensors.domain_size(m::SizeDoublingMapping) = m.domain_size | |
47 | |
48 | |
49 m = SizeDoublingMapping{Int, 1, 1}((3,)) | |
50 v = [0,1,2] | |
51 @test m*v isa AbstractVector{Int} | |
52 @test size(m*v) == 2 .*size(v) | |
53 @test (m*v)[0] == (:apply,v,(0,)) | |
54 @test m*m*v isa AbstractVector{Int} | |
55 @test (m*m*v)[1] == (:apply,m*v,(1,)) | |
56 @test (m*m*v)[3] == (:apply,m*v,(3,)) | |
57 @test (m*m*v)[6] == (:apply,m*v,(6,)) | |
58 @test_broken BoundsError == (m*m*v)[0] | |
59 @test_broken BoundsError == (m*m*v)[7] | |
60 @test_throws MethodError m*m | |
61 | |
62 m = SizeDoublingMapping{Int, 2, 1}((3,)) | |
63 @test_throws MethodError m*ones(Int,2,2) | |
64 @test_throws MethodError m*m*v | |
65 | |
66 m = SizeDoublingMapping{Float64, 2, 2}((3,3)) | |
67 v = ones(3,3) | |
68 @test size(m*v) == 2 .*size(v) | |
69 @test (m*v)[1,2] == (:apply,v,(1,2)) | |
70 | |
71 struct ScalingOperator{T,D} <: TensorMapping{T,D,D} | |
72 λ::T | |
73 size::NTuple{D,Int} | |
74 end | |
75 | |
76 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] | |
77 LazyTensors.range_size(m::ScalingOperator) = m.size | |
78 LazyTensors.domain_size(m::ScalingOperator) = m.size | |
79 | |
80 m = ScalingOperator{Int,1}(2,(3,)) | |
81 v = [1,2,3] | |
82 @test m*v isa AbstractVector | |
83 @test m*v == [2,4,6] | |
84 | |
85 m = ScalingOperator{Int,2}(2,(2,2)) | |
86 v = [[1 2];[3 4]] | |
87 @test m*v == [[2 4];[6 8]] | |
88 @test (m*v)[2,1] == 6 | |
89 end | |
90 | |
91 @testset "TensorMapping binary operations" begin | |
92 struct ScalarMapping{T,R,D} <: TensorMapping{T,R,D} | |
93 λ::T | |
94 range_size::NTuple{R,Int} | |
95 domain_size::NTuple{D,Int} | |
96 end | |
97 | |
98 LazyTensors.apply(m::ScalarMapping{T,R}, v, I::Vararg{Any,R}) where {T,R} = m.λ*v[I...] | |
99 LazyTensors.range_size(m::ScalarMapping) = m.domain_size | |
100 LazyTensors.domain_size(m::ScalarMapping) = m.range_size | |
101 | |
102 A = ScalarMapping{Float64,1,1}(2.0, (3,), (3,)) | |
103 B = ScalarMapping{Float64,1,1}(3.0, (3,), (3,)) | |
104 | |
105 v = [1.1,1.2,1.3] | |
106 for i ∈ eachindex(v) | |
107 @test ((A+B)*v)[i] == 2*v[i] + 3*v[i] | |
108 end | |
109 | |
110 for i ∈ eachindex(v) | |
111 @test ((A-B)*v)[i] == 2*v[i] - 3*v[i] | |
112 end | |
113 | |
114 @test range_size(A+B) == range_size(A) == range_size(B) | |
115 @test domain_size(A+B) == domain_size(A) == domain_size(B) | |
116 end | |
117 | |
118 @testset "LazyArray" begin | |
119 @testset "LazyConstantArray" begin | |
120 @test LazyTensors.LazyConstantArray(3,(3,2)) isa LazyArray{Int,2} | |
121 | |
122 lca = LazyTensors.LazyConstantArray(3.0,(3,2)) | |
123 @test eltype(lca) == Float64 | |
124 @test ndims(lca) == 2 | |
125 @test size(lca) == (3,2) | |
126 @test lca[2] == 3.0 | |
127 end | |
128 struct DummyArray{T,D, T1<:AbstractArray{T,D}} <: LazyArray{T,D} | |
129 data::T1 | |
130 end | |
131 Base.size(v::DummyArray) = size(v.data) | |
132 Base.getindex(v::DummyArray{T,D}, I::Vararg{Int,D}) where {T,D} = v.data[I...] | |
133 | |
134 # Test lazy operations | |
135 v1 = [1, 2.3, 4] | |
136 v2 = [1., 2, 3] | |
137 s = 3.4 | |
138 r_add_v = v1 .+ v2 | |
139 r_sub_v = v1 .- v2 | |
140 r_times_v = v1 .* v2 | |
141 r_div_v = v1 ./ v2 | |
142 r_add_s = v1 .+ s | |
143 r_sub_s = v1 .- s | |
144 r_times_s = v1 .* s | |
145 r_div_s = v1 ./ s | |
146 @test isa(v1 +̃ v2, LazyArray) | |
147 @test isa(v1 -̃ v2, LazyArray) | |
148 @test isa(v1 *̃ v2, LazyArray) | |
149 @test isa(v1 /̃ v2, LazyArray) | |
150 @test isa(v1 +̃ s, LazyArray) | |
151 @test isa(v1 -̃ s, LazyArray) | |
152 @test isa(v1 *̃ s, LazyArray) | |
153 @test isa(v1 /̃ s, LazyArray) | |
154 @test isa(s +̃ v1, LazyArray) | |
155 @test isa(s -̃ v1, LazyArray) | |
156 @test isa(s *̃ v1, LazyArray) | |
157 @test isa(s /̃ v1, LazyArray) | |
158 for i ∈ eachindex(v1) | |
159 @test (v1 +̃ v2)[i] == r_add_v[i] | |
160 @test (v1 -̃ v2)[i] == r_sub_v[i] | |
161 @test (v1 *̃ v2)[i] == r_times_v[i] | |
162 @test (v1 /̃ v2)[i] == r_div_v[i] | |
163 @test (v1 +̃ s)[i] == r_add_s[i] | |
164 @test (v1 -̃ s)[i] == r_sub_s[i] | |
165 @test (v1 *̃ s)[i] == r_times_s[i] | |
166 @test (v1 /̃ s)[i] == r_div_s[i] | |
167 @test (s +̃ v1)[i] == r_add_s[i] | |
168 @test (s -̃ v1)[i] == -r_sub_s[i] | |
169 @test (s *̃ v1)[i] == r_times_s[i] | |
170 @test (s /̃ v1)[i] == 1/r_div_s[i] | |
171 end | |
172 @test_throws BoundsError (v1 +̃ v2)[4] | |
173 v2 = [1., 2, 3, 4] | |
174 # Test that size of arrays is asserted when not specified inbounds | |
175 # TODO: Replace these errors with SizeMismatch | |
176 @test_throws DimensionMismatch v1 +̃ v2 | |
177 | |
178 # Test operations on LazyArray | |
179 v1 = DummyArray([1, 2.3, 4]) | |
180 v2 = [1., 2, 3] | |
181 @test isa(v1 + v2, LazyArray) | |
182 @test isa(v2 + v1, LazyArray) | |
183 @test isa(v1 - v2, LazyArray) | |
184 @test isa(v2 - v1, LazyArray) | |
185 for i ∈ eachindex(v2) | |
186 @test (v1 + v2)[i] == (v2 + v1)[i] == r_add_v[i] | |
187 @test (v1 - v2)[i] == -(v2 - v1)[i] == r_sub_v[i] | |
188 end | |
189 @test_throws BoundsError (v1 + v2)[4] | |
190 v2 = [1., 2, 3, 4] | |
191 # Test that size of arrays is asserted when not specified inbounds | |
192 # TODO: Replace these errors with SizeMismatch | |
193 @test_throws DimensionMismatch v1 + v2 | |
194 end | |
195 | |
196 | |
197 @testset "LazyFunctionArray" begin | |
198 @test LazyFunctionArray(i->i^2, (3,)) == [1,4,9] | |
199 @test LazyFunctionArray((i,j)->i*j, (3,2)) == [ | |
200 1 2; | |
201 2 4; | |
202 3 6; | |
203 ] | |
204 | |
205 @test size(LazyFunctionArray(i->i^2, (3,))) == (3,) | |
206 @test size(LazyFunctionArray((i,j)->i*j, (3,2))) == (3,2) | |
207 | |
208 @inferred LazyFunctionArray(i->i^2, (3,))[2] | |
209 | |
210 @test_throws BoundsError LazyFunctionArray(i->i^2, (3,))[4] | |
211 @test_throws BoundsError LazyFunctionArray((i,j)->i*j, (3,2))[4,2] | |
212 @test_throws BoundsError LazyFunctionArray((i,j)->i*j, (3,2))[2,3] | |
213 | |
214 end | |
215 | |
216 @testset "TensorMappingComposition" begin | |
217 A = rand(2,3) | |
218 B = rand(3,4) | |
219 | |
220 Ã = LazyLinearMap(A, (1,), (2,)) | |
221 B̃ = LazyLinearMap(B, (1,), (2,)) | |
222 | |
223 @test Ã∘B̃ isa TensorMappingComposition | |
224 @test range_size(Ã∘B̃) == (2,) | |
225 @test domain_size(Ã∘B̃) == (4,) | |
226 @test_throws SizeMismatch B̃∘Ã | |
227 | |
228 # @test @inbounds B̃∘Ã # Should not error even though dimensions don't match. (Since ]test runs with forced boundschecking this is currently not testable 2020-10-16) | |
229 | |
230 v = rand(4) | |
231 @test Ã∘B̃*v ≈ A*B*v rtol=1e-14 | |
232 | |
233 v = rand(2) | |
234 @test (Ã∘B̃)'*v ≈ B'*A'*v rtol=1e-14 | |
235 end | |
236 | |
237 @testset "LazyLinearMap" begin | |
238 # Test a standard matrix-vector product | |
239 # mapping vectors of size 4 to vectors of size 3. | |
240 A = rand(3,4) | |
241 Ã = LazyLinearMap(A, (1,), (2,)) | |
242 v = rand(4) | |
243 w = rand(3) | |
244 | |
245 @test à isa LazyLinearMap{T,1,1} where T | |
246 @test à isa TensorMapping{T,1,1} where T | |
247 @test range_size(Ã) == (3,) | |
248 @test domain_size(Ã) == (4,) | |
249 | |
250 @test Ã*ones(4) ≈ A*ones(4) atol=5e-13 | |
251 @test Ã*v ≈ A*v atol=5e-13 | |
252 @test Ã'*w ≈ A'*w | |
253 | |
254 A = rand(2,3,4) | |
255 @test_throws DomainError LazyLinearMap(A, (3,1), (2,)) | |
256 | |
257 # Test more exotic mappings | |
258 B = rand(3,4,2) | |
259 # Map vectors of size 2 to matrices of size (3,4) | |
260 B̃ = LazyLinearMap(B, (1,2), (3,)) | |
261 v = rand(2) | |
262 | |
263 @test range_size(B̃) == (3,4) | |
264 @test domain_size(B̃) == (2,) | |
265 @test B̃ isa TensorMapping{T,2,1} where T | |
266 @test B̃*ones(2) ≈ B[:,:,1] + B[:,:,2] atol=5e-13 | |
267 @test B̃*v ≈ B[:,:,1]*v[1] + B[:,:,2]*v[2] atol=5e-13 | |
268 | |
269 # Map matrices of size (3,2) to vectors of size 4 | |
270 B̃ = LazyLinearMap(B, (2,), (1,3)) | |
271 v = rand(3,2) | |
272 | |
273 @test range_size(B̃) == (4,) | |
274 @test domain_size(B̃) == (3,2) | |
275 @test B̃ isa TensorMapping{T,1,2} where T | |
276 @test B̃*ones(3,2) ≈ B[1,:,1] + B[2,:,1] + B[3,:,1] + | |
277 B[1,:,2] + B[2,:,2] + B[3,:,2] atol=5e-13 | |
278 @test B̃*v ≈ B[1,:,1]*v[1,1] + B[2,:,1]*v[2,1] + B[3,:,1]*v[3,1] + | |
279 B[1,:,2]v[1,2] + B[2,:,2]*v[2,2] + B[3,:,2]*v[3,2] atol=5e-13 | |
280 | |
281 | |
282 # TODO: | |
283 # @inferred (B̃*v)[2] | |
284 end | |
285 | |
286 | |
287 @testset "IdentityMapping" begin | |
288 @test IdentityMapping{Float64}((4,5)) isa IdentityMapping{T,2} where T | |
289 @test IdentityMapping{Float64}((4,5)) isa TensorMapping{T,2,2} where T | |
290 @test IdentityMapping{Float64}((4,5)) == IdentityMapping{Float64}(4,5) | |
291 | |
292 @test IdentityMapping(3,2) isa IdentityMapping{Float64,2} | |
293 | |
294 for sz ∈ [(4,5),(3,),(5,6,4)] | |
295 I = IdentityMapping{Float64}(sz) | |
296 v = rand(sz...) | |
297 @test I*v == v | |
298 @test I'*v == v | |
299 | |
300 @test range_size(I) == sz | |
301 @test domain_size(I) == sz | |
302 end | |
303 | |
304 I = IdentityMapping{Float64}((4,5)) | |
305 v = rand(4,5) | |
306 @inferred (I*v)[3,2] | |
307 @inferred (I'*v)[3,2] | |
308 @inferred range_size(I) | |
309 | |
310 @inferred range_dim(I) | |
311 @inferred domain_dim(I) | |
312 | |
313 Ã = rand(4,2) | |
314 A = LazyLinearMap(Ã,(1,),(2,)) | |
315 I1 = IdentityMapping{Float64}(2) | |
316 I2 = IdentityMapping{Float64}(4) | |
317 @test A∘I1 == A | |
318 @test I2∘A == A | |
319 @test I1∘I1 == I1 | |
320 @test_throws SizeMismatch I1∘A | |
321 @test_throws SizeMismatch A∘I2 | |
322 @test_throws SizeMismatch I1∘I2 | |
323 end | |
324 | |
325 @testset "InflatedTensorMapping" begin | |
326 I(sz...) = IdentityMapping(sz...) | |
327 | |
328 Ã = rand(4,2) | |
329 B̃ = rand(4,2,3) | |
330 C̃ = rand(4,2,3) | |
331 | |
332 A = LazyLinearMap(Ã,(1,),(2,)) | |
333 B = LazyLinearMap(B̃,(1,2),(3,)) | |
334 C = LazyLinearMap(C̃,(1,),(2,3)) | |
335 | |
336 @testset "Constructors" begin | |
337 @test InflatedTensorMapping(I(3,2), A, I(4)) isa TensorMapping{Float64, 4, 4} | |
338 @test InflatedTensorMapping(I(3,2), B, I(4)) isa TensorMapping{Float64, 5, 4} | |
339 @test InflatedTensorMapping(I(3), C, I(2,3)) isa TensorMapping{Float64, 4, 5} | |
340 @test InflatedTensorMapping(C, I(2,3)) isa TensorMapping{Float64, 3, 4} | |
341 @test InflatedTensorMapping(I(3), C) isa TensorMapping{Float64, 2, 3} | |
342 @test InflatedTensorMapping(I(3), I(2,3)) isa TensorMapping{Float64, 3, 3} | |
343 end | |
344 | |
345 @testset "Range and domain size" begin | |
346 @test range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) | |
347 @test domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) | |
348 | |
349 @test range_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,4,2,4) | |
350 @test domain_size(InflatedTensorMapping(I(3,2), B, I(4))) == (3,2,3,4) | |
351 | |
352 @test range_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,4,2,3) | |
353 @test domain_size(InflatedTensorMapping(I(3), C, I(2,3))) == (3,2,3,2,3) | |
354 | |
355 @inferred range_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,4,4) | |
356 @inferred domain_size(InflatedTensorMapping(I(3,2), A, I(4))) == (3,2,2,4) | |
357 end | |
358 | |
359 @testset "Application" begin | |
360 # Testing regular application and transposed application with inflation "before", "after" and "before and after". | |
361 # The inflated tensor mappings are chosen to preserve, reduce and increase the dimension of the result compared to the input. | |
362 tests = [ | |
363 ( | |
364 InflatedTensorMapping(I(3,2), A, I(4)), | |
365 (v-> @tullio res[a,b,c,d] := Ã[c,i]*v[a,b,i,d]), # Expected result of apply | |
366 (v-> @tullio res[a,b,c,d] := Ã[i,c]*v[a,b,i,d]), # Expected result of apply_transpose | |
367 ), | |
368 ( | |
369 InflatedTensorMapping(I(3,2), B, I(4)), | |
370 (v-> @tullio res[a,b,c,d,e] := B̃[c,d,i]*v[a,b,i,e]), | |
371 (v-> @tullio res[a,b,c,d] := B̃[i,j,c]*v[a,b,i,j,d]), | |
372 ), | |
373 ( | |
374 InflatedTensorMapping(I(3,2), C, I(4)), | |
375 (v-> @tullio res[a,b,c,d] := C̃[c,i,j]*v[a,b,i,j,d]), | |
376 (v-> @tullio res[a,b,c,d,e] := C̃[i,c,d]*v[a,b,i,e]), | |
377 ), | |
378 ( | |
379 InflatedTensorMapping(I(3,2), A), | |
380 (v-> @tullio res[a,b,c] := Ã[c,i]*v[a,b,i]), | |
381 (v-> @tullio res[a,b,c] := Ã[i,c]*v[a,b,i]), | |
382 ), | |
383 ( | |
384 InflatedTensorMapping(I(3,2), B), | |
385 (v-> @tullio res[a,b,c,d] := B̃[c,d,i]*v[a,b,i]), | |
386 (v-> @tullio res[a,b,c] := B̃[i,j,c]*v[a,b,i,j]), | |
387 ), | |
388 ( | |
389 InflatedTensorMapping(I(3,2), C), | |
390 (v-> @tullio res[a,b,c] := C̃[c,i,j]*v[a,b,i,j]), | |
391 (v-> @tullio res[a,b,c,d] := C̃[i,c,d]*v[a,b,i]), | |
392 ), | |
393 ( | |
394 InflatedTensorMapping(A,I(4)), | |
395 (v-> @tullio res[a,b] := Ã[a,i]*v[i,b]), | |
396 (v-> @tullio res[a,b] := Ã[i,a]*v[i,b]), | |
397 ), | |
398 ( | |
399 InflatedTensorMapping(B,I(4)), | |
400 (v-> @tullio res[a,b,c] := B̃[a,b,i]*v[i,c]), | |
401 (v-> @tullio res[a,b] := B̃[i,j,a]*v[i,j,b]), | |
402 ), | |
403 ( | |
404 InflatedTensorMapping(C,I(4)), | |
405 (v-> @tullio res[a,b] := C̃[a,i,j]*v[i,j,b]), | |
406 (v-> @tullio res[a,b,c] := C̃[i,a,b]*v[i,c]), | |
407 ), | |
408 ] | |
409 | |
410 @testset "apply" begin | |
411 for i ∈ 1:length(tests) | |
412 tm = tests[i][1] | |
413 v = rand(domain_size(tm)...) | |
414 true_value = tests[i][2](v) | |
415 @test tm*v ≈ true_value rtol=1e-14 | |
416 end | |
417 end | |
418 | |
419 @testset "apply_transpose" begin | |
420 for i ∈ 1:length(tests) | |
421 tm = tests[i][1] | |
422 v = rand(range_size(tm)...) | |
423 true_value = tests[i][3](v) | |
424 @test tm'*v ≈ true_value rtol=1e-14 | |
425 end | |
426 end | |
427 | |
428 @testset "Inference of application" begin | |
429 struct ScalingOperator{T,D} <: TensorMapping{T,D,D} | |
430 λ::T | |
431 size::NTuple{D,Int} | |
432 end | |
433 | |
434 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] | |
435 LazyTensors.range_size(m::ScalingOperator) = m.size | |
436 LazyTensors.domain_size(m::ScalingOperator) = m.size | |
437 | |
438 tm = InflatedTensorMapping(I(2,3),ScalingOperator(2.0, (3,2)),I(3,4)) | |
439 v = rand(domain_size(tm)...) | |
440 | |
441 @inferred apply(tm,v,1,2,3,2,2,4) | |
442 @inferred (tm*v)[1,2,3,2,2,4] | |
443 end | |
444 end | |
445 | |
446 @testset "InflatedTensorMapping of InflatedTensorMapping" begin | |
447 A = ScalingOperator(2.0,(2,3)) | |
448 itm = InflatedTensorMapping(I(3,2), A, I(4)) | |
449 @test InflatedTensorMapping(I(4), itm, I(2)) == InflatedTensorMapping(I(4,3,2), A, I(4,2)) | |
450 @test InflatedTensorMapping(itm, I(2)) == InflatedTensorMapping(I(3,2), A, I(4,2)) | |
451 @test InflatedTensorMapping(I(4), itm) == InflatedTensorMapping(I(4,3,2), A, I(4)) | |
452 | |
453 @test InflatedTensorMapping(I(2), I(2), I(2)) isa InflatedTensorMapping # The constructor should always return its type. | |
454 end | |
455 end | |
456 | |
457 @testset "split_index" begin | |
458 @test LazyTensors.split_index(Val(2),Val(1),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,5,6),(3,4)) | |
459 @test LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,4,5,6) == ((1,2,:,:,:,5,6),(3,4)) | |
460 @test LazyTensors.split_index(Val(3),Val(1),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,5,6),(4,)) | |
461 @test LazyTensors.split_index(Val(3),Val(2),Val(1),Val(2),1,2,3,4,5,6) == ((1,2,3,:,:,5,6),(4,)) | |
462 @test LazyTensors.split_index(Val(1),Val(1),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,4,5,6),(2,3)) | |
463 @test LazyTensors.split_index(Val(1),Val(2),Val(2),Val(3),1,2,3,4,5,6) == ((1,:,:,4,5,6),(2,3)) | |
464 | |
465 @test LazyTensors.split_index(Val(0),Val(1),Val(3),Val(3),1,2,3,4,5,6) == ((:,4,5,6),(1,2,3)) | |
466 @test LazyTensors.split_index(Val(3),Val(1),Val(3),Val(0),1,2,3,4,5,6) == ((1,2,3,:),(4,5,6)) | |
467 | |
468 @inferred LazyTensors.split_index(Val(2),Val(3),Val(2),Val(2),1,2,3,2,2,4) | |
469 end | |
470 | |
471 @testset "slice_tuple" begin | |
472 @test LazyTensors.slice_tuple((1,2,3),Val(1), Val(3)) == (1,2,3) | |
473 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(2), Val(5)) == (2,3,4,5) | |
474 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(1), Val(3)) == (1,2,3) | |
475 @test LazyTensors.slice_tuple((1,2,3,4,5,6),Val(4), Val(6)) == (4,5,6) | |
476 end | |
477 | |
478 @testset "split_tuple" begin | |
479 @testset "2 parts" begin | |
480 @test LazyTensors.split_tuple((),Val(0)) == ((),()) | |
481 @test LazyTensors.split_tuple((1,),Val(0)) == ((),(1,)) | |
482 @test LazyTensors.split_tuple((1,),Val(1)) == ((1,),()) | |
483 | |
484 @test LazyTensors.split_tuple((1,2,3,4),Val(0)) == ((),(1,2,3,4)) | |
485 @test LazyTensors.split_tuple((1,2,3,4),Val(1)) == ((1,),(2,3,4)) | |
486 @test LazyTensors.split_tuple((1,2,3,4),Val(2)) == ((1,2),(3,4)) | |
487 @test LazyTensors.split_tuple((1,2,3,4),Val(3)) == ((1,2,3),(4,)) | |
488 @test LazyTensors.split_tuple((1,2,3,4),Val(4)) == ((1,2,3,4),()) | |
489 | |
490 @test LazyTensors.split_tuple((1,2,true,4),Val(3)) == ((1,2,true),(4,)) | |
491 | |
492 @inferred LazyTensors.split_tuple((1,2,3,4),Val(3)) | |
493 @inferred LazyTensors.split_tuple((1,2,true,4),Val(3)) | |
494 end | |
495 | |
496 @testset "3 parts" begin | |
497 @test LazyTensors.split_tuple((),Val(0),Val(0)) == ((),(),()) | |
498 @test LazyTensors.split_tuple((1,2,3),Val(1), Val(1)) == ((1,),(2,),(3,)) | |
499 @test LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) == ((1,),(true,),(3,)) | |
500 | |
501 @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(1),Val(2)) == ((1,),(2,3),(4,5,6)) | |
502 @test LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) == ((1,2,3),(4,5),(6,)) | |
503 | |
504 @inferred LazyTensors.split_tuple((1,2,3,4,5,6),Val(3),Val(2)) | |
505 @inferred LazyTensors.split_tuple((1,true,3),Val(1), Val(1)) | |
506 end | |
507 end | |
508 | |
509 @testset "flatten_tuple" begin | |
510 @test LazyTensors.flatten_tuple((1,)) == (1,) | |
511 @test LazyTensors.flatten_tuple((1,2,3,4,5,6)) == (1,2,3,4,5,6) | |
512 @test LazyTensors.flatten_tuple((1,2,(3,4),5,6)) == (1,2,3,4,5,6) | |
513 @test LazyTensors.flatten_tuple((1,2,(3,(4,5)),6)) == (1,2,3,4,5,6) | |
514 @test LazyTensors.flatten_tuple(((1,2),(3,4),(5,),6)) == (1,2,3,4,5,6) | |
515 end | |
516 | |
517 | |
518 @testset "LazyOuterProduct" begin | |
519 struct ScalingOperator{T,D} <: TensorMapping{T,D,D} | |
520 λ::T | |
521 size::NTuple{D,Int} | |
522 end | |
523 | |
524 LazyTensors.apply(m::ScalingOperator{T,D}, v, I::Vararg{Any,D}) where {T,D} = m.λ*v[I...] | |
525 LazyTensors.range_size(m::ScalingOperator) = m.size | |
526 LazyTensors.domain_size(m::ScalingOperator) = m.size | |
527 | |
528 A = ScalingOperator(2.0, (5,)) | |
529 B = ScalingOperator(3.0, (3,)) | |
530 C = ScalingOperator(5.0, (3,2)) | |
531 | |
532 AB = LazyOuterProduct(A,B) | |
533 @test AB isa TensorMapping{T,2,2} where T | |
534 @test range_size(AB) == (5,3) | |
535 @test domain_size(AB) == (5,3) | |
536 | |
537 v = rand(range_size(AB)...) | |
538 @test AB*v == 6*v | |
539 | |
540 ABC = LazyOuterProduct(A,B,C) | |
541 | |
542 @test ABC isa TensorMapping{T,4,4} where T | |
543 @test range_size(ABC) == (5,3,3,2) | |
544 @test domain_size(ABC) == (5,3,3,2) | |
545 | |
546 @test A⊗B == AB | |
547 @test A⊗B⊗C == ABC | |
548 | |
549 A = rand(3,2) | |
550 B = rand(2,4,3) | |
551 | |
552 v₁ = rand(2,4,3) | |
553 v₂ = rand(4,3,2) | |
554 | |
555 Ã = LazyLinearMap(A,(1,),(2,)) | |
556 B̃ = LazyLinearMap(B,(1,),(2,3)) | |
557 | |
558 ÃB̃ = LazyOuterProduct(Ã,B̃) | |
559 @tullio ABv[i,k] := A[i,j]*B[k,l,m]*v₁[j,l,m] | |
560 @test ÃB̃*v₁ ≈ ABv | |
561 | |
562 B̃Ã = LazyOuterProduct(B̃,Ã) | |
563 @tullio BAv[k,i] := A[i,j]*B[k,l,m]*v₂[l,m,j] | |
564 @test B̃Ã*v₂ ≈ BAv | |
565 | |
566 @testset "Indentity mapping arguments" begin | |
567 @test LazyOuterProduct(IdentityMapping(3,2), IdentityMapping(1,2)) == IdentityMapping(3,2,1,2) | |
568 | |
569 Ã = LazyLinearMap(A,(1,),(2,)) | |
570 @test LazyOuterProduct(IdentityMapping(3,2), Ã) == InflatedTensorMapping(IdentityMapping(3,2),Ã) | |
571 @test LazyOuterProduct(Ã, IdentityMapping(3,2)) == InflatedTensorMapping(Ã,IdentityMapping(3,2)) | |
572 | |
573 I1 = IdentityMapping(3,2) | |
574 I2 = IdentityMapping(4) | |
575 @test I1⊗Ã⊗I2 == InflatedTensorMapping(I1, Ã, I2) | |
576 end | |
577 | |
578 end | |
579 | |
580 end |