Mercurial > repos > public > sbplib_julia
comparison src/Grids/manifolds.jl @ 1584:d7483e8af705 feature/sbp_operators/laplace_curvilinear
Merge feature/grids/manifolds
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 26 Apr 2024 08:45:54 +0200 |
parents | f77c5309dd2b |
children | 84c3b9d71218 |
comparison
equal
deleted
inserted
replaced
1563:6e910408c51a | 1584:d7483e8af705 |
---|---|
16 See also: [`Interval`](@ref), [`Rectangle`](@ref), [`Box`](@ref), | 16 See also: [`Interval`](@ref), [`Rectangle`](@ref), [`Box`](@ref), |
17 [`Triangle`](@ref), [`Tetrahedron`](@ref), [`HyperBox`](@ref), | 17 [`Triangle`](@ref), [`Tetrahedron`](@ref), [`HyperBox`](@ref), |
18 [`Simplex`](@ref), | 18 [`Simplex`](@ref), |
19 """ | 19 """ |
20 abstract type ParameterSpace{D} end | 20 abstract type ParameterSpace{D} end |
21 Base.ndims(::ParameterSpace{D}) where D = D | |
21 | 22 |
22 struct HyperBox{T,D} <: ParameterSpace{D} | 23 struct HyperBox{T,D} <: ParameterSpace{D} |
23 a::SVector{D,T} | 24 a::SVector{D,T} |
24 b::SVector{D,T} | 25 b::SVector{D,T} |
25 end | 26 end |
41 unitcube(T=Float64) = unithyperbox(T,3) | 42 unitcube(T=Float64) = unithyperbox(T,3) |
42 unithyperbox(T, D) = HyperBox((@SVector zeros(T,D)), (@SVector ones(T,D))) | 43 unithyperbox(T, D) = HyperBox((@SVector zeros(T,D)), (@SVector ones(T,D))) |
43 unithyperbox(D) = unithyperbox(Float64,D) | 44 unithyperbox(D) = unithyperbox(Float64,D) |
44 | 45 |
45 | 46 |
46 struct Simplex{T,D} <: ParameterSpace{D} | 47 struct Simplex{T,D,NV} <: ParameterSpace{D} |
47 verticies::NTuple{D,SVector{D,T}} | 48 verticies::NTuple{NV,SVector{D,T}} |
48 end | 49 end |
50 | |
51 Simplex(verticies::Vararg{AbstractArray}) = Simplex(Tuple(SVector(v...) for v ∈ verticies)) | |
52 | |
53 verticies(s::Simplex) = s.verticies | |
49 | 54 |
50 Triangle{T} = Simplex{T,2} | 55 Triangle{T} = Simplex{T,2} |
51 Tetrahedron{T} = Simplex{T,3} | 56 Tetrahedron{T} = Simplex{T,3} |
52 | 57 |
53 unittriangle(T) = unitsimplex(T,2) | 58 unittriangle(T=Float64) = unitsimplex(T,2) |
54 unittetrahedron(T) = unitsimplex(T,3) | 59 unittetrahedron(T=Float64) = unitsimplex(T,3) |
55 function unitsimplex(T,D) | 60 function unitsimplex(T,D) |
56 z = @SVector zeros(T,D) | 61 z = @SVector zeros(T,D) |
57 unitelement = one(eltype(z)) | 62 unitelement = one(eltype(z)) |
58 verticies = ntuple(i->setindex(z, unitelement, i), 4) | 63 verticies = ntuple(i->setindex(z, unitelement, i), D) |
59 return Simplex(verticies) | 64 return Simplex((z,verticies...)) |
65 end | |
66 unitsimplex(D) = unitsimplex(Float64, D) | |
67 | |
68 """ | |
69 Chart{D} | |
70 | |
71 A parametrized description of a manifold or part of a manifold. | |
72 """ | |
73 struct Chart{D, PST<:ParameterSpace{D}, MT} | |
74 mapping::MT | |
75 parameterspace::PST | |
60 end | 76 end |
61 | 77 |
78 domain_dim(::Chart{D}) where D = D | |
79 (c::Chart)(ξ) = c.mapping(ξ) | |
80 parameterspace(c::Chart) = c.parameterspace | |
62 | 81 |
63 """ | 82 """ |
83 jacobian(c::Chart, ξ) | |
64 | 84 |
65 A parametrized description of a manifold or part of a manifold. | 85 The jacobian of the mapping evaluated at `ξ`. This defers to the |
66 | 86 implementation of `jacobian` for the mapping itself. If no implementation is |
67 Should implement a methods for | 87 available one can easily be specified for either the mapping function or the |
68 * `parameterspace` | 88 chart itself. |
69 * `(::Chart)(ξs...)` | 89 ```julia |
70 | 90 c = Chart(f, ps) |
71 There is a default implementation for `(::Chart{D})(::SVector{D})` | 91 jacobian(f::typeof(f), ξ) = f′(ξ) |
92 ``` | |
93 or | |
94 ```julia | |
95 c = Chart(f, ps) | |
96 jacobian(c::typeof(c),ξ) = f′(ξ) | |
97 ``` | |
98 which will both allow calling `jacobian(c,ξ)`. | |
72 """ | 99 """ |
73 abstract type Chart{D} end | 100 jacobian(c::Chart, ξ) = jacobian(c.mapping, ξ) |
74 # abstract type Chart{D,R} end | |
75 | |
76 domain_dim(::Chart{D}) where D = D | |
77 # range_dim(::Chart{D,R}) where {D,R} = R | |
78 | |
79 """ | |
80 The parameterspace of a chart | |
81 """ | |
82 function parameterspace end | |
83 | |
84 (c::Chart{D})(x̄::SVector{D}) where D = c(x̄...) | |
85 | |
86 | |
87 struct ConcereteChart{PST<:ParameterSpace, MT} | |
88 parameterspace::PST | |
89 mapping::MT | |
90 end | |
91 | |
92 (c::Chart)(x̄) = c.mapping(x̄) | |
93 | 101 |
94 | 102 |
95 """ | 103 """ |
96 Atlas | 104 Atlas |
97 | 105 |